{"title":"Hypoxic compound exercise improves cardiac function in Drosophila high fructose diet via KHK.","authors":"Xu Ping, Qiufang Li, Meng Ding, Zhengwen Yu, Qin Yi, Yuepeng Li, Wenzhi Gu, Ping Zhang, Zike Zhang, Lan Zheng","doi":"10.1016/j.yjmcc.2025.02.005","DOIUrl":null,"url":null,"abstract":"<p><p>Overconsumption of fructose has been linked to the development of systemic metabolic and cardiac diseases, yet few studies have focused on the link between cardiac fructose metabolism and the development of heart disease. Low-oxygen complex exercise is considered an effective means of treating and preventing metabolic diseases and improving cardiac function, however, it is unclear, the link between low-oxygen complex exercise and high-fructose-induced heart disease. Therefore, the aim of this study was to investigate the effect of hypoxic complex exercise on heart disease on a high fructose diet. The results of the study found that hypoxic compound exercise improved the upregulation of inflammatory factor Upd3 and systemic fat accumulation in the heart induced by high fructose diet by inhibiting the expression of KHK gene in the heart; and it improved the impaired cardiac rhythmic function and pumping function, improved the disorder of myofilament fiber arrangement, reduced the level of cardiac oxidative stress, and reduced cardiac collagen deposition. In addition, cardiac KHK-specific knockdown had the same effect on high fructose diet hearts. Compared with single KHK cardiac-specific knockdown or hypoxic combination exercise, hypoxic combination exercise combined with KHK cardiac-specific knockdown was superior in improving the high-fructose diet-induced increase in arrhythmia index, systolic and diastolic dysfunction, and decrease in fractional shortening. Therefore, we conclude that hypoxic complex exercise improved high-fructose diet-induced cardiac rhythmic function and pumping dysfunction by reducing KHK expression.</p>","PeriodicalId":16402,"journal":{"name":"Journal of molecular and cellular cardiology","volume":" ","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular and cellular cardiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.yjmcc.2025.02.005","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Overconsumption of fructose has been linked to the development of systemic metabolic and cardiac diseases, yet few studies have focused on the link between cardiac fructose metabolism and the development of heart disease. Low-oxygen complex exercise is considered an effective means of treating and preventing metabolic diseases and improving cardiac function, however, it is unclear, the link between low-oxygen complex exercise and high-fructose-induced heart disease. Therefore, the aim of this study was to investigate the effect of hypoxic complex exercise on heart disease on a high fructose diet. The results of the study found that hypoxic compound exercise improved the upregulation of inflammatory factor Upd3 and systemic fat accumulation in the heart induced by high fructose diet by inhibiting the expression of KHK gene in the heart; and it improved the impaired cardiac rhythmic function and pumping function, improved the disorder of myofilament fiber arrangement, reduced the level of cardiac oxidative stress, and reduced cardiac collagen deposition. In addition, cardiac KHK-specific knockdown had the same effect on high fructose diet hearts. Compared with single KHK cardiac-specific knockdown or hypoxic combination exercise, hypoxic combination exercise combined with KHK cardiac-specific knockdown was superior in improving the high-fructose diet-induced increase in arrhythmia index, systolic and diastolic dysfunction, and decrease in fractional shortening. Therefore, we conclude that hypoxic complex exercise improved high-fructose diet-induced cardiac rhythmic function and pumping dysfunction by reducing KHK expression.
期刊介绍:
The Journal of Molecular and Cellular Cardiology publishes work advancing knowledge of the mechanisms responsible for both normal and diseased cardiovascular function. To this end papers are published in all relevant areas. These include (but are not limited to): structural biology; genetics; proteomics; morphology; stem cells; molecular biology; metabolism; biophysics; bioengineering; computational modeling and systems analysis; electrophysiology; pharmacology and physiology. Papers are encouraged with both basic and translational approaches. The journal is directed not only to basic scientists but also to clinical cardiologists who wish to follow the rapidly advancing frontiers of basic knowledge of the heart and circulation.