{"title":"TRPA1 and thermosensitivity.","authors":"Makoto Tominaga, Moe Iwata","doi":"10.1016/j.jphyss.2025.100010","DOIUrl":null,"url":null,"abstract":"<p><p>TRPA1 was first identified as a noxious cold receptor in mice in 2003. Multiple TRPA1 genes have since been isolated, indicating that TRPA1 emerged early in evolution and showing the existence of TRPA1 variants in a range of species, including insects. Although TRPA1 channels in insects to birds (endotherms) show heat-dependent activation that indicates the importance of TRPA1 for detecting ambient warm to hot temperatures, in mammals TRPA1 temperature sensitivity remains controversial. Analyses of insect TRPA1 highlighted several important structural motifs, but the structural basis of heat-evoked activation is still unclear. Furthermore, atomic-level structures of TRPA1 solved using single particle analysis with cryo-electron microscopy did not reveal a basis for TRPA1 thermosensitivity. Recent studies did demonstrate that human TRPA1 has bimodal thermosensitivity and mouse TRPA1 is involved in noxious heat sensitivity, but additional systematic analyses are needed to determine the general mechanism of mammalian TRPA1 thermosensitivity.</p>","PeriodicalId":16832,"journal":{"name":"Journal of Physiological Sciences","volume":"75 1","pages":"100010"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11875151/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physiological Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jphyss.2025.100010","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
TRPA1 was first identified as a noxious cold receptor in mice in 2003. Multiple TRPA1 genes have since been isolated, indicating that TRPA1 emerged early in evolution and showing the existence of TRPA1 variants in a range of species, including insects. Although TRPA1 channels in insects to birds (endotherms) show heat-dependent activation that indicates the importance of TRPA1 for detecting ambient warm to hot temperatures, in mammals TRPA1 temperature sensitivity remains controversial. Analyses of insect TRPA1 highlighted several important structural motifs, but the structural basis of heat-evoked activation is still unclear. Furthermore, atomic-level structures of TRPA1 solved using single particle analysis with cryo-electron microscopy did not reveal a basis for TRPA1 thermosensitivity. Recent studies did demonstrate that human TRPA1 has bimodal thermosensitivity and mouse TRPA1 is involved in noxious heat sensitivity, but additional systematic analyses are needed to determine the general mechanism of mammalian TRPA1 thermosensitivity.
期刊介绍:
The Journal of Physiological Sciences publishes peer-reviewed original papers, reviews, short communications, technical notes, and letters to the editor, based on the principles and theories of modern physiology and addressed to the international scientific community. All fields of physiology are covered, encompassing molecular, cellular and systems physiology. The emphasis is on human and vertebrate physiology, but comparative papers are also considered. The process of obtaining results must be ethically sound.
Fields covered:
Adaptation and environment
Autonomic nervous function
Biophysics
Cell sensors and signaling
Central nervous system and brain sciences
Endocrinology and metabolism
Excitable membranes and neural cell physiology
Exercise physiology
Gastrointestinal and kidney physiology
Heart and circulatory physiology
Molecular and cellular physiology
Muscle physiology
Physiome/systems biology
Respiration physiology
Senses.