Structural connectome construction using constrained spherical deconvolution in multi-shell diffusion-weighted magnetic resonance imaging.

IF 13.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Nature Protocols Pub Date : 2025-02-14 DOI:10.1038/s41596-024-01129-1
Marlene Tahedl, J-Donald Tournier, Robert E Smith
{"title":"Structural connectome construction using constrained spherical deconvolution in multi-shell diffusion-weighted magnetic resonance imaging.","authors":"Marlene Tahedl, J-Donald Tournier, Robert E Smith","doi":"10.1038/s41596-024-01129-1","DOIUrl":null,"url":null,"abstract":"<p><p>Connectional neuroanatomical maps can be generated in vivo by using diffusion-weighted magnetic resonance imaging (dMRI) data, and their representation as structural connectome (SC) atlases adopts network-based brain analysis methods. We explain the generation of high-quality SCs of brain connectivity by using recent advances for reconstructing long-range white matter connections such as local fiber orientation estimation on multi-shell dMRI data with constrained spherical deconvolution, which yields both increased sensitivity to detecting crossing fibers compared with competing methods and the ability to separate signal contributions from different macroscopic tissues, and improvements to streamline tractography such as anatomically constrained tractography and spherical-deconvolution informed filtering of tractograms, which have increased the biological accuracy of SC creation. Here, we provide step-by-step instructions to creating SCs by using these methods. In addition, intermediate steps of our procedure can be adapted for related analyses, including region of interest-based tractography and quantification of local white matter properties. The associated software MRtrix3 implements the relevant tools for easy application of the protocol, with specific processing tasks deferred to components of the FSL software. The protocol is suitable for users with expertise in dMRI and neuroscience and requires between 2 h and 13 h to complete, depending on the available computational system.</p>","PeriodicalId":18901,"journal":{"name":"Nature Protocols","volume":" ","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Protocols","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41596-024-01129-1","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Connectional neuroanatomical maps can be generated in vivo by using diffusion-weighted magnetic resonance imaging (dMRI) data, and their representation as structural connectome (SC) atlases adopts network-based brain analysis methods. We explain the generation of high-quality SCs of brain connectivity by using recent advances for reconstructing long-range white matter connections such as local fiber orientation estimation on multi-shell dMRI data with constrained spherical deconvolution, which yields both increased sensitivity to detecting crossing fibers compared with competing methods and the ability to separate signal contributions from different macroscopic tissues, and improvements to streamline tractography such as anatomically constrained tractography and spherical-deconvolution informed filtering of tractograms, which have increased the biological accuracy of SC creation. Here, we provide step-by-step instructions to creating SCs by using these methods. In addition, intermediate steps of our procedure can be adapted for related analyses, including region of interest-based tractography and quantification of local white matter properties. The associated software MRtrix3 implements the relevant tools for easy application of the protocol, with specific processing tasks deferred to components of the FSL software. The protocol is suitable for users with expertise in dMRI and neuroscience and requires between 2 h and 13 h to complete, depending on the available computational system.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Protocols
Nature Protocols 生物-生化研究方法
CiteScore
29.10
自引率
0.70%
发文量
128
审稿时长
4 months
期刊介绍: Nature Protocols focuses on publishing protocols used to address significant biological and biomedical science research questions, including methods grounded in physics and chemistry with practical applications to biological problems. The journal caters to a primary audience of research scientists and, as such, exclusively publishes protocols with research applications. Protocols primarily aimed at influencing patient management and treatment decisions are not featured. The specific techniques covered encompass a wide range, including but not limited to: Biochemistry, Cell biology, Cell culture, Chemical modification, Computational biology, Developmental biology, Epigenomics, Genetic analysis, Genetic modification, Genomics, Imaging, Immunology, Isolation, purification, and separation, Lipidomics, Metabolomics, Microbiology, Model organisms, Nanotechnology, Neuroscience, Nucleic-acid-based molecular biology, Pharmacology, Plant biology, Protein analysis, Proteomics, Spectroscopy, Structural biology, Synthetic chemistry, Tissue culture, Toxicology, and Virology.
期刊最新文献
Sonication-assisted protein extraction improves proteomic detection of membrane-bound and DNA-binding proteins from tumor tissues. Synthesis of bicyclo[3.1.1]heptanes, meta-substituted arene isosteres, from [3.1.1]propellane. Structural connectome construction using constrained spherical deconvolution in multi-shell diffusion-weighted magnetic resonance imaging. Massively parallel in vivo Perturb-seq screening. Single-cell CRISPR screening in mouse brain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1