Pilocytic Astrocytoma in a Child with Spinal Muscular Atrophy Treated with Onasemnogene Abeparvovec.

IF 12.1 1区 医学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Molecular Therapy Pub Date : 2025-02-15 DOI:10.1016/j.ymthe.2025.02.025
Dorothea Holzwarth, Gabriele Calaminus, Johannes Friese, Thomas Sejersen, Hildegard Büning, Philipp John-Neek, Antonella Lucía Bastone, Michael Rothe, Keith Mansfield, Silvana Libertini, Valerie Dubost, Brent Kuzmiski, Iulian Alecu, Ivan Labik, Janbernd Kirschner
{"title":"Pilocytic Astrocytoma in a Child with Spinal Muscular Atrophy Treated with Onasemnogene Abeparvovec.","authors":"Dorothea Holzwarth, Gabriele Calaminus, Johannes Friese, Thomas Sejersen, Hildegard Büning, Philipp John-Neek, Antonella Lucía Bastone, Michael Rothe, Keith Mansfield, Silvana Libertini, Valerie Dubost, Brent Kuzmiski, Iulian Alecu, Ivan Labik, Janbernd Kirschner","doi":"10.1016/j.ymthe.2025.02.025","DOIUrl":null,"url":null,"abstract":"<p><p>Spinal muscular atrophy (SMA) is a severe neuromuscular disease, leading to progressive muscle weakness and potentially early mortality if untreated. Onasemnogene abeparvovec is a recombinant adeno-associated virus serotype 9 (rAAV9)-based gene therapy that has demonstrated improvements in survival and motor function for SMA patients. Here, we present a case of a patient diagnosed with a grade 1 pilocytic astrocytoma at the age of 2 years, approximately 8 months after onasemnogene abeparvovec treatment. Although vector genomes delivered by rAAVs persist primarily as episomes, rare integration events have been linked to tumor formation in neonate murine models. Therefore, we investigated the presence and possible integration of onasemnogene abeparvovec in formalin-fixed paraffin embedded (FFPE) and frozen tumor samples. In situ hybridization demonstrated variable transduction levels in individual tumor cells while droplet digital PCR measured an average vector copy number ranging from 0.7-4.9 vector genomes/diploid genome. Integration site analysis identified a low number of integration sites that were not conserved between technical replicates, nor between FFPE and frozen samples, indicating that cells hosting integrating vector genomes represent a minority in the overall cell population. Thus, molecular analysis of the tumor tissue suggests that tumorigenesis was causally independent of the administration of onasemnogene abeparvovec.</p>","PeriodicalId":19020,"journal":{"name":"Molecular Therapy","volume":" ","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ymthe.2025.02.025","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Spinal muscular atrophy (SMA) is a severe neuromuscular disease, leading to progressive muscle weakness and potentially early mortality if untreated. Onasemnogene abeparvovec is a recombinant adeno-associated virus serotype 9 (rAAV9)-based gene therapy that has demonstrated improvements in survival and motor function for SMA patients. Here, we present a case of a patient diagnosed with a grade 1 pilocytic astrocytoma at the age of 2 years, approximately 8 months after onasemnogene abeparvovec treatment. Although vector genomes delivered by rAAVs persist primarily as episomes, rare integration events have been linked to tumor formation in neonate murine models. Therefore, we investigated the presence and possible integration of onasemnogene abeparvovec in formalin-fixed paraffin embedded (FFPE) and frozen tumor samples. In situ hybridization demonstrated variable transduction levels in individual tumor cells while droplet digital PCR measured an average vector copy number ranging from 0.7-4.9 vector genomes/diploid genome. Integration site analysis identified a low number of integration sites that were not conserved between technical replicates, nor between FFPE and frozen samples, indicating that cells hosting integrating vector genomes represent a minority in the overall cell population. Thus, molecular analysis of the tumor tissue suggests that tumorigenesis was causally independent of the administration of onasemnogene abeparvovec.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Therapy
Molecular Therapy 医学-生物工程与应用微生物
CiteScore
19.20
自引率
3.20%
发文量
357
审稿时长
3 months
期刊介绍: Molecular Therapy is the leading journal for research in gene transfer, vector development, stem cell manipulation, and therapeutic interventions. It covers a broad spectrum of topics including genetic and acquired disease correction, vaccine development, pre-clinical validation, safety/efficacy studies, and clinical trials. With a focus on advancing genetics, medicine, and biotechnology, Molecular Therapy publishes peer-reviewed research, reviews, and commentaries to showcase the latest advancements in the field. With an impressive impact factor of 12.4 in 2022, it continues to attract top-tier contributions.
期刊最新文献
Immunological responses and clinical outcomes in pet dogs with osteosarcoma receiving standard of care therapy and a recombinant Listeria vaccine expressing HER2/neu. Pilocytic Astrocytoma in a Child with Spinal Muscular Atrophy Treated with Onasemnogene Abeparvovec. Targeting BCL11B in CAR-engineered lymphoid progenitors drives NK-like cell development with prolonged anti-leukemic activity. Multiple-omics Analysis Reveals Dedifferentiation-Immunosuppression Loop Formed by Malignant Cell and Macrophage in Intrahepatic cholangiocarcinoma. Modulating the PD-1-FABP5 Axis in ILC2s to Regulate Adipose Tissue Metabolism in Obesity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1