{"title":"Dead leaf turnover in monodominant forest of the marcescent palm Lodoicea maldivica.","authors":"Peter J Edwards, Frauke Fleischer-Dogley","doi":"10.1007/s00442-025-05673-9","DOIUrl":null,"url":null,"abstract":"<p><p>The palm Lodoicea maldivica is marcescent, with dead leaves remaining attached to the trunk for an extended period. To investigate how this trait affects the distribution and turnover of dead leaf material in Lodoicea forest, we measured dead leaf production and standing crops of dead leaves attached to palms (D<sub>M</sub>) and in the litter layer (D<sub>L</sub>); for comparison, we measured D<sub>L</sub> in stands of the non-marcescent species Martellidendron hornei and Deckenia nobilis. In a litterbag experiment, we investigated the decomposition of four types of leaf material: newly dead marcescent Lodoicea, old marcescent Lodoicea, and newly dead Deckenia and Martellidendron. Rates of decomposition were very slow and varied significantly amongst types (P < 0.001), with mean annual decomposition constants (k values) of 0.41, 0.37, 0.25 and 0.47 y<sup>-1</sup> for new and old Lodoicea, Deckenia and Martellidendron, respectively. Decomposition rates also varied significantly with location in the forest (P < 0.001), apparently due to variable moisture conditions resulting from the funneling of water by Lodoicea leaves. Compared to other tropical forests, N and P concentrations in dead leaves of all species were very low, while total quantities of dead leaf material were extremely high (24.0, 22.3 and 16.7 t dry weight ha<sup>-1</sup> for Lodoicea, Deckenia and Martellidendron, respectively). In the Lodoicea plot, marcescent leaves accounted for 46% (11.2 t dry weight ha<sup>-1</sup>) of all dead leaf material. We discuss the ecological significance of marcescence and its implications for management, especially in making Lodoicea forest vulnerable to fire.</p>","PeriodicalId":19473,"journal":{"name":"Oecologia","volume":"207 2","pages":"35"},"PeriodicalIF":2.3000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oecologia","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s00442-025-05673-9","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The palm Lodoicea maldivica is marcescent, with dead leaves remaining attached to the trunk for an extended period. To investigate how this trait affects the distribution and turnover of dead leaf material in Lodoicea forest, we measured dead leaf production and standing crops of dead leaves attached to palms (DM) and in the litter layer (DL); for comparison, we measured DL in stands of the non-marcescent species Martellidendron hornei and Deckenia nobilis. In a litterbag experiment, we investigated the decomposition of four types of leaf material: newly dead marcescent Lodoicea, old marcescent Lodoicea, and newly dead Deckenia and Martellidendron. Rates of decomposition were very slow and varied significantly amongst types (P < 0.001), with mean annual decomposition constants (k values) of 0.41, 0.37, 0.25 and 0.47 y-1 for new and old Lodoicea, Deckenia and Martellidendron, respectively. Decomposition rates also varied significantly with location in the forest (P < 0.001), apparently due to variable moisture conditions resulting from the funneling of water by Lodoicea leaves. Compared to other tropical forests, N and P concentrations in dead leaves of all species were very low, while total quantities of dead leaf material were extremely high (24.0, 22.3 and 16.7 t dry weight ha-1 for Lodoicea, Deckenia and Martellidendron, respectively). In the Lodoicea plot, marcescent leaves accounted for 46% (11.2 t dry weight ha-1) of all dead leaf material. We discuss the ecological significance of marcescence and its implications for management, especially in making Lodoicea forest vulnerable to fire.
期刊介绍:
Oecologia publishes innovative ecological research of international interest. We seek reviews, advances in methodology, and original contributions, emphasizing the following areas:
Population ecology, Plant-microbe-animal interactions, Ecosystem ecology, Community ecology, Global change ecology, Conservation ecology,
Behavioral ecology and Physiological Ecology.
In general, studies that are purely descriptive, mathematical, documentary, and/or natural history will not be considered.