Wiktoria Parzych, Kamila Godel-Jędrychowska, Michał Świdziński, Janusz Niedojadło, Ewa Kurczyńska, Katarzyna Niedojadło
{"title":"Bioimaging insights into structural pathways of cell-to-cell communication within the male (MGU) and female (FGU) germ units of Arabidopsis thaliana.","authors":"Wiktoria Parzych, Kamila Godel-Jędrychowska, Michał Świdziński, Janusz Niedojadło, Ewa Kurczyńska, Katarzyna Niedojadło","doi":"10.1007/s00299-025-03441-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Key message: </strong>Cytoplasmic connections are present between cells within male and female germ units (MGU, FGU), suggesting potential structural pathways for communication. Cell-to-cell communication within the male germ unit (MGU), which consists of two sperm cells and the vegetative cell nucleus, and the female germ unit (FGU), comprising the synergids, the egg cell, and the central cell, is crucial for gamete maturation, fertilization, and early embryogenesis in angiosperms. The MGU facilitates the transport and delivery of immotile sperm cells via the elongating pollen tube to the FGU/embryo sac, which is deeply embedded within the ovule and the ovary. Through applying various bioimaging techniques at both electron and light microscopy levels, we examine the structure and the function of these units in the model plant Arabidopsis thaliana, with a particular focus on potential structural pathways for communication. In the MGU, this communication is facilitated by a cytoplasmic projection that connects the sperm cells to the lobed vegetative nucleus. In the FGU, the extracellular matrix adjacent to the egg cell, central cell, and synergids plays a similar role. We discuss our findings in the context of previous studies on Hyacinthus orientalis, where, in contrast to Arabidopsis-which possesses a tricellular pollen structure-sperm cells are formed within the growing pollen tube.</p>","PeriodicalId":20204,"journal":{"name":"Plant Cell Reports","volume":"44 3","pages":"56"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11828830/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Cell Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00299-025-03441-w","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Key message: Cytoplasmic connections are present between cells within male and female germ units (MGU, FGU), suggesting potential structural pathways for communication. Cell-to-cell communication within the male germ unit (MGU), which consists of two sperm cells and the vegetative cell nucleus, and the female germ unit (FGU), comprising the synergids, the egg cell, and the central cell, is crucial for gamete maturation, fertilization, and early embryogenesis in angiosperms. The MGU facilitates the transport and delivery of immotile sperm cells via the elongating pollen tube to the FGU/embryo sac, which is deeply embedded within the ovule and the ovary. Through applying various bioimaging techniques at both electron and light microscopy levels, we examine the structure and the function of these units in the model plant Arabidopsis thaliana, with a particular focus on potential structural pathways for communication. In the MGU, this communication is facilitated by a cytoplasmic projection that connects the sperm cells to the lobed vegetative nucleus. In the FGU, the extracellular matrix adjacent to the egg cell, central cell, and synergids plays a similar role. We discuss our findings in the context of previous studies on Hyacinthus orientalis, where, in contrast to Arabidopsis-which possesses a tricellular pollen structure-sperm cells are formed within the growing pollen tube.
期刊介绍:
Plant Cell Reports publishes original, peer-reviewed articles on new advances in all aspects of plant cell science, plant genetics and molecular biology. Papers selected for publication contribute significant new advances to clearly identified technological problems and/or biological questions. The articles will prove relevant beyond the narrow topic of interest to a readership with broad scientific background. The coverage includes such topics as:
- genomics and genetics
- metabolism
- cell biology
- abiotic and biotic stress
- phytopathology
- gene transfer and expression
- molecular pharming
- systems biology
- nanobiotechnology
- genome editing
- phenomics and synthetic biology
The journal also publishes opinion papers, review and focus articles on the latest developments and new advances in research and technology in plant molecular biology and biotechnology.