Bioimaging insights into structural pathways of cell-to-cell communication within the male (MGU) and female (FGU) germ units of Arabidopsis thaliana.

IF 5.3 2区 生物学 Q1 PLANT SCIENCES Plant Cell Reports Pub Date : 2025-02-14 DOI:10.1007/s00299-025-03441-w
Wiktoria Parzych, Kamila Godel-Jędrychowska, Michał Świdziński, Janusz Niedojadło, Ewa Kurczyńska, Katarzyna Niedojadło
{"title":"Bioimaging insights into structural pathways of cell-to-cell communication within the male (MGU) and female (FGU) germ units of Arabidopsis thaliana.","authors":"Wiktoria Parzych, Kamila Godel-Jędrychowska, Michał Świdziński, Janusz Niedojadło, Ewa Kurczyńska, Katarzyna Niedojadło","doi":"10.1007/s00299-025-03441-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Key message: </strong>Cytoplasmic connections are present between cells within male and female germ units (MGU, FGU), suggesting potential structural pathways for communication. Cell-to-cell communication within the male germ unit (MGU), which consists of two sperm cells and the vegetative cell nucleus, and the female germ unit (FGU), comprising the synergids, the egg cell, and the central cell, is crucial for gamete maturation, fertilization, and early embryogenesis in angiosperms. The MGU facilitates the transport and delivery of immotile sperm cells via the elongating pollen tube to the FGU/embryo sac, which is deeply embedded within the ovule and the ovary. Through applying various bioimaging techniques at both electron and light microscopy levels, we examine the structure and the function of these units in the model plant Arabidopsis thaliana, with a particular focus on potential structural pathways for communication. In the MGU, this communication is facilitated by a cytoplasmic projection that connects the sperm cells to the lobed vegetative nucleus. In the FGU, the extracellular matrix adjacent to the egg cell, central cell, and synergids plays a similar role. We discuss our findings in the context of previous studies on Hyacinthus orientalis, where, in contrast to Arabidopsis-which possesses a tricellular pollen structure-sperm cells are formed within the growing pollen tube.</p>","PeriodicalId":20204,"journal":{"name":"Plant Cell Reports","volume":"44 3","pages":"56"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11828830/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Cell Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00299-025-03441-w","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Key message: Cytoplasmic connections are present between cells within male and female germ units (MGU, FGU), suggesting potential structural pathways for communication. Cell-to-cell communication within the male germ unit (MGU), which consists of two sperm cells and the vegetative cell nucleus, and the female germ unit (FGU), comprising the synergids, the egg cell, and the central cell, is crucial for gamete maturation, fertilization, and early embryogenesis in angiosperms. The MGU facilitates the transport and delivery of immotile sperm cells via the elongating pollen tube to the FGU/embryo sac, which is deeply embedded within the ovule and the ovary. Through applying various bioimaging techniques at both electron and light microscopy levels, we examine the structure and the function of these units in the model plant Arabidopsis thaliana, with a particular focus on potential structural pathways for communication. In the MGU, this communication is facilitated by a cytoplasmic projection that connects the sperm cells to the lobed vegetative nucleus. In the FGU, the extracellular matrix adjacent to the egg cell, central cell, and synergids plays a similar role. We discuss our findings in the context of previous studies on Hyacinthus orientalis, where, in contrast to Arabidopsis-which possesses a tricellular pollen structure-sperm cells are formed within the growing pollen tube.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Cell Reports
Plant Cell Reports 生物-植物科学
CiteScore
10.80
自引率
1.60%
发文量
135
审稿时长
3.2 months
期刊介绍: Plant Cell Reports publishes original, peer-reviewed articles on new advances in all aspects of plant cell science, plant genetics and molecular biology. Papers selected for publication contribute significant new advances to clearly identified technological problems and/or biological questions. The articles will prove relevant beyond the narrow topic of interest to a readership with broad scientific background. The coverage includes such topics as: - genomics and genetics - metabolism - cell biology - abiotic and biotic stress - phytopathology - gene transfer and expression - molecular pharming - systems biology - nanobiotechnology - genome editing - phenomics and synthetic biology The journal also publishes opinion papers, review and focus articles on the latest developments and new advances in research and technology in plant molecular biology and biotechnology.
期刊最新文献
PKS1 involved in anthocyanin accumulation in red-skinned pear fruit. Prime editing via precise sequence insertion restores function of the recessive rc allele in rice. Bioimaging insights into structural pathways of cell-to-cell communication within the male (MGU) and female (FGU) germ units of Arabidopsis thaliana. Revisiting development and physiology of wild rice relatives for crop improvement and climate resilience. Proteomic insights into fruit-pathogen interactions: managing biotic stress in fruit.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1