Proteomics profiling of research models for studying pancreatic ductal adenocarcinoma.

IF 5.8 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Scientific Data Pub Date : 2025-02-14 DOI:10.1038/s41597-025-04522-x
Mathilde Resell, Hanne-Line Rabben, Animesh Sharma, Lars Hagen, Linh Hoang, Nan T Skogaker, Anne Aarvik, Eirik Knudsen Bjåstad, Magnus K Svensson, Manoj Amrutkar, Caroline S Verbeke, Surinder K Batra, Gunnar Qvigstad, Timothy C Wang, Anil Rustgi, Duan Chen, Chun-Mei Zhao
{"title":"Proteomics profiling of research models for studying pancreatic ductal adenocarcinoma.","authors":"Mathilde Resell, Hanne-Line Rabben, Animesh Sharma, Lars Hagen, Linh Hoang, Nan T Skogaker, Anne Aarvik, Eirik Knudsen Bjåstad, Magnus K Svensson, Manoj Amrutkar, Caroline S Verbeke, Surinder K Batra, Gunnar Qvigstad, Timothy C Wang, Anil Rustgi, Duan Chen, Chun-Mei Zhao","doi":"10.1038/s41597-025-04522-x","DOIUrl":null,"url":null,"abstract":"<p><p>Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal malignancies, with a five-year survival rate of 10-15% due to late-stage diagnosis and limited efficacy of existing treatments. This study utilized proteomics-based systems modelling to generate multimodal datasets from various research models, including PDAC cells, spheroids, organoids, and tissues derived from murine and human samples. Identical mass spectrometry-based proteomics was applied across the different models. The preparation and validation of the research models and the proteomics were described in detail. The assembly datasets we present here contribute to the data collection on PDAC, which will be useful for systems modelling, data mining, knowledge discovery in databases, and bioinformatics of individual models. Further data analysis may lead to the generation of research hypotheses, predictions of targets for diagnosis and treatment, and relationships between data variables.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"12 1","pages":"266"},"PeriodicalIF":5.8000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Data","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41597-025-04522-x","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal malignancies, with a five-year survival rate of 10-15% due to late-stage diagnosis and limited efficacy of existing treatments. This study utilized proteomics-based systems modelling to generate multimodal datasets from various research models, including PDAC cells, spheroids, organoids, and tissues derived from murine and human samples. Identical mass spectrometry-based proteomics was applied across the different models. The preparation and validation of the research models and the proteomics were described in detail. The assembly datasets we present here contribute to the data collection on PDAC, which will be useful for systems modelling, data mining, knowledge discovery in databases, and bioinformatics of individual models. Further data analysis may lead to the generation of research hypotheses, predictions of targets for diagnosis and treatment, and relationships between data variables.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Scientific Data
Scientific Data Social Sciences-Education
CiteScore
11.20
自引率
4.10%
发文量
689
审稿时长
16 weeks
期刊介绍: Scientific Data is an open-access journal focused on data, publishing descriptions of research datasets and articles on data sharing across natural sciences, medicine, engineering, and social sciences. Its goal is to enhance the sharing and reuse of scientific data, encourage broader data sharing, and acknowledge those who share their data. The journal primarily publishes Data Descriptors, which offer detailed descriptions of research datasets, including data collection methods and technical analyses validating data quality. These descriptors aim to facilitate data reuse rather than testing hypotheses or presenting new interpretations, methods, or in-depth analyses.
期刊最新文献
A dataset for surface defect detection on complex structured parts based on photometric stereo. A dataset of prokaryotic diversity in the surface layer of the China Seas. High-quality genome assembly of a cosmopolitan insect predator, Chrysoperla zastrowi sillemi (Esben-Petersen). HIPGDAC-ES: historical population grid data compilation for Spain (1900-2021). Mapping 10-m Industrial Lands across 1000+ Global Large Cities, 2017-2023.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1