Honey-derived Paenibacillus spp. with potential to affect bee brood development in Apis mellifera: Are they a new threat to honey bees?

IF 5.5 1区 农林科学 Q1 IMMUNOLOGY Virulence Pub Date : 2025-12-01 Epub Date: 2025-02-15 DOI:10.1080/21505594.2025.2451170
Keiko Nakamura, Mariko Okamoto, Takashi Mada, Mariko Harada, Kayo Okumura, Daisuke Takamatsu
{"title":"Honey-derived <i>Paenibacillus</i> spp. with potential to affect bee brood development in <i>Apis mellifera</i>: Are they a new threat to honey bees?","authors":"Keiko Nakamura, Mariko Okamoto, Takashi Mada, Mariko Harada, Kayo Okumura, Daisuke Takamatsu","doi":"10.1080/21505594.2025.2451170","DOIUrl":null,"url":null,"abstract":"<p><p>Honey bees are important pollinators in both agriculture and ecosystems, and their health is essential for sustainable human development. Although only two bacteria, <i>Paenibacillus larvae</i> and <i>Melissococcus plutonius</i>, have been identified as bacterial pathogens in honey bee brood for over 100 years, we found three additional <i>Paenibacillus</i> strains (<i>Paenibacillus</i> sp. J27TS7, <i>Paenibacillus azoreducens</i> J34TS1, and <i>Paenibacillus melissococcoides</i> J46TS7) in honey that harmed honey bee brood development. In particular, <i>Paenibacillus</i> sp. J27TS7 was highly virulent in bee larvae (the median lethal dose [LD<sub>50</sub>] = 12.7 spores/larva) and was comparable to <i>P. larvae</i> (LD<sub>50</sub> = 2.3-11.5 spores/larva). <i>Paenibacillus azoreducens</i> J34TS1 showed the second-highest virulence (LD<sub>50</sub> = 45.9 spores/larva), and <i>P. melissococcoides</i> J46TS7 was the least virulent (LD<sub>50</sub> = 469.0 spores/larva). However, <i>P. melissococcoides</i> was most frequently detected in Japanese honey among the three species, with the highest concentration being 1.8 × 10<sup>6</sup> spores/mL honey, suggesting its wide distribution in Japanese apiaries. The novel pathogenic <i>Paenibacillus</i> species were categorized into the fast killer (<i>Paenibacillus</i> sp. J27TS7), medium-fast killer (<i>P. melissococcoides</i>), and slow killer (<i>P. azoreducens</i>) like <i>P. larvae</i> strains in terms of the time to kill infected brood; however, histopathological and genome analyses indicated that their pathogenic mechanisms were different from those of <i>P. larvae</i> strains. Moreover, <i>P. melissococcoides</i> showed differences in virulence depending on the lineage of the strain. These findings represent the first discovery of honey bee brood pathogens in more than 100 years and indicate the need to look beyond known pathogens for a comprehensive understanding of honey bee diseases.</p>","PeriodicalId":23747,"journal":{"name":"Virulence","volume":"16 1","pages":"2451170"},"PeriodicalIF":5.5000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11834430/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virulence","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/21505594.2025.2451170","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Honey bees are important pollinators in both agriculture and ecosystems, and their health is essential for sustainable human development. Although only two bacteria, Paenibacillus larvae and Melissococcus plutonius, have been identified as bacterial pathogens in honey bee brood for over 100 years, we found three additional Paenibacillus strains (Paenibacillus sp. J27TS7, Paenibacillus azoreducens J34TS1, and Paenibacillus melissococcoides J46TS7) in honey that harmed honey bee brood development. In particular, Paenibacillus sp. J27TS7 was highly virulent in bee larvae (the median lethal dose [LD50] = 12.7 spores/larva) and was comparable to P. larvae (LD50 = 2.3-11.5 spores/larva). Paenibacillus azoreducens J34TS1 showed the second-highest virulence (LD50 = 45.9 spores/larva), and P. melissococcoides J46TS7 was the least virulent (LD50 = 469.0 spores/larva). However, P. melissococcoides was most frequently detected in Japanese honey among the three species, with the highest concentration being 1.8 × 106 spores/mL honey, suggesting its wide distribution in Japanese apiaries. The novel pathogenic Paenibacillus species were categorized into the fast killer (Paenibacillus sp. J27TS7), medium-fast killer (P. melissococcoides), and slow killer (P. azoreducens) like P. larvae strains in terms of the time to kill infected brood; however, histopathological and genome analyses indicated that their pathogenic mechanisms were different from those of P. larvae strains. Moreover, P. melissococcoides showed differences in virulence depending on the lineage of the strain. These findings represent the first discovery of honey bee brood pathogens in more than 100 years and indicate the need to look beyond known pathogens for a comprehensive understanding of honey bee diseases.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Virulence
Virulence IMMUNOLOGY-MICROBIOLOGY
CiteScore
9.20
自引率
1.90%
发文量
123
审稿时长
6-12 weeks
期刊介绍: Virulence is a fully open access peer-reviewed journal. All articles will (if accepted) be available for anyone to read anywhere, at any time immediately on publication. Virulence is the first international peer-reviewed journal of its kind to focus exclusively on microbial pathogenicity, the infection process and host-pathogen interactions. To address the new infectious challenges, emerging infectious agents and antimicrobial resistance, there is a clear need for interdisciplinary research.
期刊最新文献
Human macrophage response to the emerging enteric pathogen Aeromonas veronii: Inflammation, apoptosis, and downregulation of histones. Emerging West African Genotype Chikungunya Virus in Mosquito Virome. Are Escherichia coli causing recurrent cystitis just ordinary uropathogenic E. coli (UPEC) strains? Arginine depletion-induced autophagy and metabolic dysregulation are involved in the disease severity of hand, foot, and mouth disease. Effect of COVID-19 infection on thyroid function status and clinical indexes among hypothyroid outpatients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1