N-acetylglucosamine sensing in the filamentous soil fungus Trichoderma reesei.

Sadia Fida Ullah, Mislav Oreb, Eckhard Boles, Vaibhav Srivastava, Verena Seidl-Seiboth, Bernhard Seiboth, Lisa Kappel
{"title":"N-acetylglucosamine sensing in the filamentous soil fungus Trichoderma reesei.","authors":"Sadia Fida Ullah, Mislav Oreb, Eckhard Boles, Vaibhav Srivastava, Verena Seidl-Seiboth, Bernhard Seiboth, Lisa Kappel","doi":"10.1111/febs.70015","DOIUrl":null,"url":null,"abstract":"<p><p>N-acetylglucosamine (GlcNAc) is involved in diverse signaling pathways in dimorphic yeasts and bacteria and is related to morphogenetic switching, mating, stress, virulence, and cell death. Recently, GlcNAc has been shown to promote plant growth by shaping the bacterial soil community. However, the role of GlcNAc sensing in filamentous soil fungi has not been investigated. By using Trichoderma reesei as a model organism, we show here that GlcNAc impacts the expression of around 2100 genes. Carbohydrate metabolism, amino acid metabolism, and secondary metabolism were the three most strongly affected classes of eukaryotic orthologous groups (KOG classes). Two key regulators of GlcNAc catabolism, the NDT80 domain-containing transcriptional regulator RON1, and a GlcNAc sensor, NGS1, are needed for differential regulation of two-thirds of these genes. In silico structural modeling of NGS1 identified a domain with homology to the GCN5-related histone acetyltransferase from Candida albicans, which serves as a GlcNAc catabolism regulator and GlcNAc sensor. Finally, we characterized the third regulator of GlcNAc sensing in T. reesei, which is the highly specific GlcNAc transporter N-acetylglucosamine transporter (NGT1). Using a deletion mutant of ngt1, we demonstrate that GlcNAc has to enter the cell to activate the GlcNAc catabolic gene expression. Interestingly, in contrast to dimorphic yeasts, the pathways for defense and pathogenicity seem to be induced in T. reesei by external GlcNAc. Given the ancestral role of Trichoderma spp. in the fungal kingdom and the highly conserved GlcNAc catabolism cluster that includes their regulators in many species of fungi, we propose a regulatory network for GlcNAc sensing in soil fungi.</p>","PeriodicalId":94226,"journal":{"name":"The FEBS journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FEBS journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/febs.70015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

N-acetylglucosamine (GlcNAc) is involved in diverse signaling pathways in dimorphic yeasts and bacteria and is related to morphogenetic switching, mating, stress, virulence, and cell death. Recently, GlcNAc has been shown to promote plant growth by shaping the bacterial soil community. However, the role of GlcNAc sensing in filamentous soil fungi has not been investigated. By using Trichoderma reesei as a model organism, we show here that GlcNAc impacts the expression of around 2100 genes. Carbohydrate metabolism, amino acid metabolism, and secondary metabolism were the three most strongly affected classes of eukaryotic orthologous groups (KOG classes). Two key regulators of GlcNAc catabolism, the NDT80 domain-containing transcriptional regulator RON1, and a GlcNAc sensor, NGS1, are needed for differential regulation of two-thirds of these genes. In silico structural modeling of NGS1 identified a domain with homology to the GCN5-related histone acetyltransferase from Candida albicans, which serves as a GlcNAc catabolism regulator and GlcNAc sensor. Finally, we characterized the third regulator of GlcNAc sensing in T. reesei, which is the highly specific GlcNAc transporter N-acetylglucosamine transporter (NGT1). Using a deletion mutant of ngt1, we demonstrate that GlcNAc has to enter the cell to activate the GlcNAc catabolic gene expression. Interestingly, in contrast to dimorphic yeasts, the pathways for defense and pathogenicity seem to be induced in T. reesei by external GlcNAc. Given the ancestral role of Trichoderma spp. in the fungal kingdom and the highly conserved GlcNAc catabolism cluster that includes their regulators in many species of fungi, we propose a regulatory network for GlcNAc sensing in soil fungi.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
丝状土壤真菌毛霉中的 N-乙酰葡糖胺传感。
N-乙酰葡糖胺(GlcNAc)参与了二形酵母菌和细菌的多种信号通路,并与形态发生转换、交配、应激、毒力和细胞死亡有关。最近的研究表明,GlcNAc 可通过塑造土壤细菌群落来促进植物生长。然而,丝状土壤真菌中的 GlcNAc 感知作用尚未得到研究。我们以毛霉为模式生物,发现 GlcNAc 会影响约 2100 个基因的表达。碳水化合物代谢、氨基酸代谢和次生代谢是受影响最大的三类真核同源组(KOG 类)。这些基因中有三分之二需要两个关键的 GlcNAc 分解调节因子(含 NDT80 结构域的转录调节因子 RON1 和 GlcNAc 传感器 NGS1)来进行差异调节。对 NGS1 进行的硅学结构建模发现了一个与白念珠菌中的 GCN5 相关组蛋白乙酰转移酶具有同源性的结构域,该结构域可作为 GlcNAc 分解调节因子和 GlcNAc 传感器。最后,我们鉴定了 T. reesei 中 GlcNAc 感知的第三个调节因子,即高度特异性的 GlcNAc 转运体 N-acetylglucosamine 转运体(NGT1)。我们利用ngt1的缺失突变体证明,GlcNAc必须进入细胞才能激活GlcNAc分解基因的表达。有趣的是,与二态酵母不同,防御和致病途径似乎是由外部 GlcNAc 诱导的。鉴于毛霉菌属在真菌王国中的祖先作用,以及在许多真菌物种中包括其调控因子在内的高度保守的 GlcNAc 分解簇,我们提出了土壤真菌中 GlcNAc 感知的调控网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Issue Information Sea anemone Cys-ladder peptide Ms13-1 induces a pain response as a positive modulator of acid-sensing ion channel 1a. ARIES domains: functional signaling units of type I interferon responses. Estrogen synthesized in the central nervous system enhances MC4R expression and reduces food intake. Genetic and functional dissection of the glutamate-proline pathway reveals a shortcut for glutamate catabolism in Leishmania.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1