Estrogen synthesized in the central nervous system enhances MC4R expression and reduces food intake.

Takanori Hayashi, Kanako Kumamoto, Tatsuya Kobayashi, Xinfeng Hou, Shizuko Nagao, Nobuhiro Harada, Shinichiro Honda, Yohei Shimono, Eiji Nishio
{"title":"Estrogen synthesized in the central nervous system enhances MC4R expression and reduces food intake.","authors":"Takanori Hayashi, Kanako Kumamoto, Tatsuya Kobayashi, Xinfeng Hou, Shizuko Nagao, Nobuhiro Harada, Shinichiro Honda, Yohei Shimono, Eiji Nishio","doi":"10.1111/febs.17426","DOIUrl":null,"url":null,"abstract":"<p><p>Estrogen is synthesized throughout various tissues in the body, and its production is regulated by the rate-limiting enzyme aromatase (encoded by the Cyp19a1 gene). Notably, aromatase is also expressed in central nervous system cells, allowing for localized estrogen synthesis in regions such as the hypothalamus. Estrogens produced within these neurons are referred to as neuroestrogens. In this study, we investigated the role of neuroestrogens in the regulation of appetite through modulation of hypothalamic pathways in OVX, ArKO, and aromatase-restored mice. Estrogen suppresses appetite by influencing the expression of appetite-regulating peptides, including POMC and NPY, via MC4R. We explored the direct effects of neuroestrogens, independent from ovarian estrogen, on appetite suppression and the underlying molecular mechanisms. We monitored body weight and food intake and evaluated the expression of Cyp19a1, Mc4r, and other appetite-related genes. Our findings indicate that OVX and ArKO mice exhibited increased body weight and food consumption, which correlated with altered expression of Mc4r and Cyp19a1. Conversely, restoration of Cyp19a1 expression in a neuron specific manner significantly decreased food intake and increased Mc4r expression in the hypothalamus. Furthermore, neuroestrogens enhanced leptin responsiveness. Our results imply that neuroestrogens likely contribute to appetite regulation and may be relevant for body weight reduction.</p>","PeriodicalId":94226,"journal":{"name":"The FEBS journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FEBS journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/febs.17426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Estrogen is synthesized throughout various tissues in the body, and its production is regulated by the rate-limiting enzyme aromatase (encoded by the Cyp19a1 gene). Notably, aromatase is also expressed in central nervous system cells, allowing for localized estrogen synthesis in regions such as the hypothalamus. Estrogens produced within these neurons are referred to as neuroestrogens. In this study, we investigated the role of neuroestrogens in the regulation of appetite through modulation of hypothalamic pathways in OVX, ArKO, and aromatase-restored mice. Estrogen suppresses appetite by influencing the expression of appetite-regulating peptides, including POMC and NPY, via MC4R. We explored the direct effects of neuroestrogens, independent from ovarian estrogen, on appetite suppression and the underlying molecular mechanisms. We monitored body weight and food intake and evaluated the expression of Cyp19a1, Mc4r, and other appetite-related genes. Our findings indicate that OVX and ArKO mice exhibited increased body weight and food consumption, which correlated with altered expression of Mc4r and Cyp19a1. Conversely, restoration of Cyp19a1 expression in a neuron specific manner significantly decreased food intake and increased Mc4r expression in the hypothalamus. Furthermore, neuroestrogens enhanced leptin responsiveness. Our results imply that neuroestrogens likely contribute to appetite regulation and may be relevant for body weight reduction.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Issue Information Sea anemone Cys-ladder peptide Ms13-1 induces a pain response as a positive modulator of acid-sensing ion channel 1a. ARIES domains: functional signaling units of type I interferon responses. Estrogen synthesized in the central nervous system enhances MC4R expression and reduces food intake. Genetic and functional dissection of the glutamate-proline pathway reveals a shortcut for glutamate catabolism in Leishmania.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1