Photoperiod-driven testicular DNA methylation in gonadotropin and sex steroid receptor promoters in Siberian hamsters.

Irem Denizli, Ana Monteiro, Kathryn R Elmer, Tyler J Stevenson
{"title":"Photoperiod-driven testicular DNA methylation in gonadotropin and sex steroid receptor promoters in Siberian hamsters.","authors":"Irem Denizli, Ana Monteiro, Kathryn R Elmer, Tyler J Stevenson","doi":"10.1007/s00359-025-01733-w","DOIUrl":null,"url":null,"abstract":"<p><p>Seasonal cycles in breeding, often orchestrated by annual changes in photoperiod, are common in nature. Here, we studied how change in photoperiod affects DNA methylation in the testes of a highly seasonal breeder: the Siberian hamster (Phodopus sungorus). We hypothesized that DNA methylation in promoter regions associated with key reproductive genes such as follicle-stimulating hormone receptor in the testes is linked to breeding and non-breeding states. Using Oxford Nanopore sequencing, we identified more than 10 million (10,151,742) differentially methylated cytosine-guanine (CpG) sites in the genome between breeding long photoperiod and non-breeding short photoperiod conditions. ShinyGo enrichment analyses identified biological pathways consisting of reproductive system, hormone-mediated signalling and gonad development. We found that short photoperiod induced DNA methylation in the promoter regions for androgen receptor (Ar), estrogen receptors (Esr1, Esr2), kisspeptin1 receptor (kiss1r) and follicle-stimulating hormone receptor (Fshr). Long photoperiods were observed to have higher DNA methylation in promoters for basic helix-loop-helix ARNT-like 1 (Bmal1), progesterone receptor (Pgr) and thyroid-stimulating hormone receptor (Tshr). Our findings provide insights into the epigenetic mechanisms underlying seasonal adaptations in timing reproduction in Siberian hamsters and could be informative for understanding male fertility and reproductive disorders in mammals.</p>","PeriodicalId":54862,"journal":{"name":"Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1007/s00359-025-01733-w","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Seasonal cycles in breeding, often orchestrated by annual changes in photoperiod, are common in nature. Here, we studied how change in photoperiod affects DNA methylation in the testes of a highly seasonal breeder: the Siberian hamster (Phodopus sungorus). We hypothesized that DNA methylation in promoter regions associated with key reproductive genes such as follicle-stimulating hormone receptor in the testes is linked to breeding and non-breeding states. Using Oxford Nanopore sequencing, we identified more than 10 million (10,151,742) differentially methylated cytosine-guanine (CpG) sites in the genome between breeding long photoperiod and non-breeding short photoperiod conditions. ShinyGo enrichment analyses identified biological pathways consisting of reproductive system, hormone-mediated signalling and gonad development. We found that short photoperiod induced DNA methylation in the promoter regions for androgen receptor (Ar), estrogen receptors (Esr1, Esr2), kisspeptin1 receptor (kiss1r) and follicle-stimulating hormone receptor (Fshr). Long photoperiods were observed to have higher DNA methylation in promoters for basic helix-loop-helix ARNT-like 1 (Bmal1), progesterone receptor (Pgr) and thyroid-stimulating hormone receptor (Tshr). Our findings provide insights into the epigenetic mechanisms underlying seasonal adaptations in timing reproduction in Siberian hamsters and could be informative for understanding male fertility and reproductive disorders in mammals.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.80
自引率
14.30%
发文量
67
审稿时长
1 months
期刊介绍: The Journal of Comparative Physiology A welcomes original articles, short reviews, and short communications in the following fields: - Neurobiology and neuroethology - Sensory physiology and ecology - Physiological and hormonal basis of behavior - Communication, orientation, and locomotion - Functional imaging and neuroanatomy Contributions should add to our understanding of mechanisms and not be purely descriptive. The level of organization addressed may be organismic, cellular, or molecular. Colour figures are free in print and online.
期刊最新文献
Photoperiod-driven testicular DNA methylation in gonadotropin and sex steroid receptor promoters in Siberian hamsters. Flupyradifurone, imidacloprid and clothianidin disrupt the auditory processing in the locust CNS. Monoamine neurochemistry, behavior, and microhabitat contribute to male coquí frog modes: silent, territorial, and paternal. Electrophysiological and behavioral responses of elongated solifuge sensilla to mechanical stimuli. Photoperiodic plasticity of pigment-dispersing factor immunoreactive fibers projecting toward prothoracicotropic hormone neurons in flesh fly Sarcophaga similis larvae.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1