Examination of mitochondria- and inflammasome-mediated mechanisms of clozapine-induced myocarditis using patient-derived iPSC cardiomyocytes

IF 9.6 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Psychiatry Pub Date : 2025-02-17 DOI:10.1038/s41380-025-02935-z
Nazanin Vaziri, Timothy E. Shutt, Wasi Karim, Thomas J. Raedler, Christos Pantelis, Naveen Thomas, Mahesh Jayaram, Steven C. Greenway, Chad A. Bousman
{"title":"Examination of mitochondria- and inflammasome-mediated mechanisms of clozapine-induced myocarditis using patient-derived iPSC cardiomyocytes","authors":"Nazanin Vaziri, Timothy E. Shutt, Wasi Karim, Thomas J. Raedler, Christos Pantelis, Naveen Thomas, Mahesh Jayaram, Steven C. Greenway, Chad A. Bousman","doi":"10.1038/s41380-025-02935-z","DOIUrl":null,"url":null,"abstract":"<p>Clozapine is the only approved pharmacotherapy for treatment-resistant schizophrenia. However, widespread utilization of clozapine is constrained due to the potential for severe adverse effects, including myocarditis. Multiple mechanisms have been suggested to account for the cardiotoxic effects of clozapine, yet these investigations have not used cells derived from clozapine treated patients. In this study, cardiomyocytes that were derived from induced pluripotent stem cells generated from four patients with treatment-resistant schizophrenia with (<i>n</i> = 2) and without (<i>n</i> = 2) a history of clozapine-induced myocarditis were used to assess mitochondria- and NLRP3 inflammasome-mediated mechanisms of this severe adverse drug reaction. We found treatment of cardiomyocytes with a physiologically-relevant dose (2.8 µM) of clozapine for 24 h: (1) induced cardiac dysfunction, increased cytotoxicity, and apoptosis, (2) induced oxidative stress by elevating the level of reactive oxygen species and mitochondrial fragmentation, and (3) elevated levels of proinflammatory cytokines and activated the NLRP3 inflammasome. These effects were more pronounced in cardiomyocytes derived from individuals with a history of clozapine-induced myocarditis. Furthermore, pharmacological targeting of the mitochondria (elamipretide) and inflammasome (ustekinumab) attenuated these clozapine-induced cardiotoxic effects. Collectively, these results suggest a mitochondria- and NLRP3 inflammasome-mediated mechanism in the development of myocarditis associated with clozapine and support further evaluation of therapeutics that target mitochondria and NLRP3 signaling.</p>","PeriodicalId":19008,"journal":{"name":"Molecular Psychiatry","volume":"49 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41380-025-02935-z","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Clozapine is the only approved pharmacotherapy for treatment-resistant schizophrenia. However, widespread utilization of clozapine is constrained due to the potential for severe adverse effects, including myocarditis. Multiple mechanisms have been suggested to account for the cardiotoxic effects of clozapine, yet these investigations have not used cells derived from clozapine treated patients. In this study, cardiomyocytes that were derived from induced pluripotent stem cells generated from four patients with treatment-resistant schizophrenia with (n = 2) and without (n = 2) a history of clozapine-induced myocarditis were used to assess mitochondria- and NLRP3 inflammasome-mediated mechanisms of this severe adverse drug reaction. We found treatment of cardiomyocytes with a physiologically-relevant dose (2.8 µM) of clozapine for 24 h: (1) induced cardiac dysfunction, increased cytotoxicity, and apoptosis, (2) induced oxidative stress by elevating the level of reactive oxygen species and mitochondrial fragmentation, and (3) elevated levels of proinflammatory cytokines and activated the NLRP3 inflammasome. These effects were more pronounced in cardiomyocytes derived from individuals with a history of clozapine-induced myocarditis. Furthermore, pharmacological targeting of the mitochondria (elamipretide) and inflammasome (ustekinumab) attenuated these clozapine-induced cardiotoxic effects. Collectively, these results suggest a mitochondria- and NLRP3 inflammasome-mediated mechanism in the development of myocarditis associated with clozapine and support further evaluation of therapeutics that target mitochondria and NLRP3 signaling.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Psychiatry
Molecular Psychiatry 医学-精神病学
CiteScore
20.50
自引率
4.50%
发文量
459
审稿时长
4-8 weeks
期刊介绍: Molecular Psychiatry focuses on publishing research that aims to uncover the biological mechanisms behind psychiatric disorders and their treatment. The journal emphasizes studies that bridge pre-clinical and clinical research, covering cellular, molecular, integrative, clinical, imaging, and psychopharmacology levels.
期刊最新文献
Examination of mitochondria- and inflammasome-mediated mechanisms of clozapine-induced myocarditis using patient-derived iPSC cardiomyocytes Characterizing metabolomic and proteomic changes in depression: a systematic analysis Multimodal evidence of mediodorsal thalamus-prefrontal circuit dysfunctions in clinical high-risk for psychosis: findings from a combined 7T fMRI, MRSI and sleep Hd-EEG study Transthyretin, a novel prognostic marker of POCD revealed by time-series RNA-sequencing analysis Preventing psychosis in people at clinical high risk: an updated meta-analysis by the World Psychiatric Association Preventive Psychiatry section
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1