Self-assembled monolayer boosts the air-stability and electrochemical reversibility of O3-type layered oxides for sodium-ion batteries

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Journal of Materials Chemistry A Pub Date : 2025-02-17 DOI:10.1039/d5ta00173k
Yan He, Lei Zhang, Hongguang Liu, Zichao Yan, Zhiqiang Zhu
{"title":"Self-assembled monolayer boosts the air-stability and electrochemical reversibility of O3-type layered oxides for sodium-ion batteries","authors":"Yan He, Lei Zhang, Hongguang Liu, Zichao Yan, Zhiqiang Zhu","doi":"10.1039/d5ta00173k","DOIUrl":null,"url":null,"abstract":"O3-NaNi<small><sub>0.33</sub></small>Fe<small><sub>0.33</sub></small>Mn<small><sub>0.33</sub></small>O<small><sub>2</sub></small> (NFM) is a promising cathode material for sodium ion batteries (SIBs), yet its instability in ambient air and transition metal dissolution during cycling hinder its practical applications. In this study, we introduce a self-assembled layer of C<small><sub>32</sub></small>H<small><sub>67</sub></small>O<small><sub>4</sub></small>P (DHP) to boost the air-stability and electrochemical reversibility of NFM. The DHP can form robust chemical bonds with the surface hydroxyl group of NFM, yielding a thin (∼6 nm), robust, and hydrophobic coating layer that effectively protects the electrode from air degradation and transition metal dissolution. Consequently, the DHP-coated NFM (NFM@DHP) cathode exhibits a capacity retention of 87.3% after 330 cycles at 1C, far surpassing the unmodified sample's retention of 54.5%. Furthermore, after 7 days exposure to humid air (30 °C, 50% relative humidity), NFM@DHP maintains a specific capacity of 118 mA h g<small><sup>−1</sup></small> at 0.1C, whereas the capacity of unmodified NFM decreases to 49 mA h g<small><sup>−1</sup></small>. Our work offers a novel approach for developing stable layered oxide cathodes for practical applications in SIBs.","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":"45 1","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5ta00173k","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

O3-NaNi0.33Fe0.33Mn0.33O2 (NFM) is a promising cathode material for sodium ion batteries (SIBs), yet its instability in ambient air and transition metal dissolution during cycling hinder its practical applications. In this study, we introduce a self-assembled layer of C32H67O4P (DHP) to boost the air-stability and electrochemical reversibility of NFM. The DHP can form robust chemical bonds with the surface hydroxyl group of NFM, yielding a thin (∼6 nm), robust, and hydrophobic coating layer that effectively protects the electrode from air degradation and transition metal dissolution. Consequently, the DHP-coated NFM (NFM@DHP) cathode exhibits a capacity retention of 87.3% after 330 cycles at 1C, far surpassing the unmodified sample's retention of 54.5%. Furthermore, after 7 days exposure to humid air (30 °C, 50% relative humidity), NFM@DHP maintains a specific capacity of 118 mA h g−1 at 0.1C, whereas the capacity of unmodified NFM decreases to 49 mA h g−1. Our work offers a novel approach for developing stable layered oxide cathodes for practical applications in SIBs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自组装单层提高了钠离子电池中 O3 型层状氧化物的空气稳定性和电化学可逆性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
期刊最新文献
Back cover A medium-entropy garnet-type oxide as a solid electrolyte with enhanced air stability for Li-ion batteries Dual-Functional Composite Coating with Flame-retardant and Antibacterial Properties for Flexible Polyurethane Foams Bacterial cellulose/reduced graphene oxide bilayer films for moist-electric power generation Ultra-micropores of hard carbons for ultrafast Na-ion storage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1