Glibenclamide targets MDH2 to relieve aging phenotypes through metabolism-regulated epigenetic modification

IF 40.8 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Signal Transduction and Targeted Therapy Pub Date : 2025-02-17 DOI:10.1038/s41392-025-02157-3
Zhifan Mao, Wenwen Liu, Rong Zou, Ling Sun, Shuman Huang, Lingyu Wu, Liru Chen, Jiale Wu, Shijie Lu, Zhouzhi Song, Xie Li, Yunyuan Huang, Yong Rao, Yi-You Huang, Baoli Li, Zelan Hu, Jian Li
{"title":"Glibenclamide targets MDH2 to relieve aging phenotypes through metabolism-regulated epigenetic modification","authors":"Zhifan Mao, Wenwen Liu, Rong Zou, Ling Sun, Shuman Huang, Lingyu Wu, Liru Chen, Jiale Wu, Shijie Lu, Zhouzhi Song, Xie Li, Yunyuan Huang, Yong Rao, Yi-You Huang, Baoli Li, Zelan Hu, Jian Li","doi":"10.1038/s41392-025-02157-3","DOIUrl":null,"url":null,"abstract":"<p>Mitochondrial metabolism-regulated epigenetic modification is a driving force of aging and a promising target for therapeutic intervention. Mitochondrial malate dehydrogenase (MDH2), an enzyme in the TCA cycle, was identified as an anti-aging target through activity-based protein profiling in present study. The expression level of MDH2 was positively correlated with the cellular senescence in <i>Mdh2</i> knockdown or overexpression fibroblasts. Glibenclamide (Gli), a classic anti-glycemic drug, was found to inhibit the activity of MDH2 and relieve fibroblast senescence in an MDH2-dependent manner. The anti-aging effects of Gli were also further validated in vivo, as it extended the lifespan and reduced the frailty index of naturally aged mice. Liver specific <i>Mdh2</i> knockdown eliminated Gli’s beneficial effects in naturally aged mice, reducing p16<sup>INK4a</sup> expression and hepatic fibrosis. Mechanistically, MDH2 inhibition or knockdown disrupted central carbon metabolism, then enhanced the methionine cycle flux, and subsequently promoted histone methylation. Notably, the tri-methylation of H3K27, identified as a crucial methylation site in reversing cellular senescence, was significantly elevated in hepatic tissues of naturally aged mice with <i>Mdh2</i> knockdown. Taken together, these findings reveal that MDH2 inhibition or knockdown delays the aging process through metabolic-epigenetic regulation. Our research not only identified MDH2 as a potential therapeutic target and Gli as a lead compound for anti-aging drug development, but also shed light on the intricate interplay of metabolism and epigenetic modifications in aging.</p>","PeriodicalId":21766,"journal":{"name":"Signal Transduction and Targeted Therapy","volume":"4 1","pages":""},"PeriodicalIF":40.8000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Transduction and Targeted Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41392-025-02157-3","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Mitochondrial metabolism-regulated epigenetic modification is a driving force of aging and a promising target for therapeutic intervention. Mitochondrial malate dehydrogenase (MDH2), an enzyme in the TCA cycle, was identified as an anti-aging target through activity-based protein profiling in present study. The expression level of MDH2 was positively correlated with the cellular senescence in Mdh2 knockdown or overexpression fibroblasts. Glibenclamide (Gli), a classic anti-glycemic drug, was found to inhibit the activity of MDH2 and relieve fibroblast senescence in an MDH2-dependent manner. The anti-aging effects of Gli were also further validated in vivo, as it extended the lifespan and reduced the frailty index of naturally aged mice. Liver specific Mdh2 knockdown eliminated Gli’s beneficial effects in naturally aged mice, reducing p16INK4a expression and hepatic fibrosis. Mechanistically, MDH2 inhibition or knockdown disrupted central carbon metabolism, then enhanced the methionine cycle flux, and subsequently promoted histone methylation. Notably, the tri-methylation of H3K27, identified as a crucial methylation site in reversing cellular senescence, was significantly elevated in hepatic tissues of naturally aged mice with Mdh2 knockdown. Taken together, these findings reveal that MDH2 inhibition or knockdown delays the aging process through metabolic-epigenetic regulation. Our research not only identified MDH2 as a potential therapeutic target and Gli as a lead compound for anti-aging drug development, but also shed light on the intricate interplay of metabolism and epigenetic modifications in aging.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Signal Transduction and Targeted Therapy
Signal Transduction and Targeted Therapy Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
44.50
自引率
1.50%
发文量
384
审稿时长
5 weeks
期刊介绍: Signal Transduction and Targeted Therapy is an open access journal that focuses on timely publication of cutting-edge discoveries and advancements in basic science and clinical research related to signal transduction and targeted therapy. Scope: The journal covers research on major human diseases, including, but not limited to: Cancer,Cardiovascular diseases,Autoimmune diseases,Nervous system diseases.
期刊最新文献
Population-level analyses identify host and environmental variables influencing the vaginal microbiome Breast cancer: pathogenesis and treatments SARS-CoV-2 compromises blastocyst quality by modifying the ovarian microenvironment Energy metabolism in health and diseases Induction chemotherapy followed by camrelizumab plus apatinib and chemotherapy as first-line treatment for extensive-stage small-cell lung cancer: a multicenter, single-arm trial
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1