Multispecies migratory connectivity indicates hemispheric-scale risk to bird populations from global change

IF 13.9 1区 生物学 Q1 ECOLOGY Nature ecology & evolution Pub Date : 2025-02-17 DOI:10.1038/s41559-024-02575-6
Sarah P. Saunders, William V. DeLuca, Brooke L. Bateman, Jill L. Deppe, Joanna Grand, Erika J. Knight, Timothy D. Meehan, Nicole L. Michel, Nathaniel E. Seavy, Melanie A. Smith, Lotem Taylor, Chad J. Witko, Chad B. Wilsey
{"title":"Multispecies migratory connectivity indicates hemispheric-scale risk to bird populations from global change","authors":"Sarah P. Saunders, William V. DeLuca, Brooke L. Bateman, Jill L. Deppe, Joanna Grand, Erika J. Knight, Timothy D. Meehan, Nicole L. Michel, Nathaniel E. Seavy, Melanie A. Smith, Lotem Taylor, Chad J. Witko, Chad B. Wilsey","doi":"10.1038/s41559-024-02575-6","DOIUrl":null,"url":null,"abstract":"<p>Global agreements to reduce the extinction risk of migratory species depend critically on intersecting migratory connectivity—the linking of individuals between regions in different seasons—and spatial patterns of environmental change. Here we integrate movement data from &gt;329,000 migratory birds of 112 species to develop a parameter representing exposure to global change: multispecies migratory connectivity. We then combine exposure with projected climate and land-cover changes as a measure of hazard and species conservation assessment scores as a metric of vulnerability to estimate the relative risk of migratory bird population declines across the Western Hemisphere. Multispecies migratory connectivity (exposure) is the strongest driver of risk relative to hazard and vulnerability, indicating the importance of synthesizing connectivity across species to comprehensively assess risk. Connections between breeding regions in Canada and non-breeding regions in South America are at the greatest risk, which underscores the particular susceptibility of long-distance migrants. Over half (54%) of the connections categorized as very high risk include breeding regions in the eastern United States. This three-part framework serves as an ecological risk assessment designed specifically for migratory species, providing both decision support for global biodiversity conservation and opportunities for intergovernmental collaboration to sustain migratory bird populations year-round.</p>","PeriodicalId":18835,"journal":{"name":"Nature ecology & evolution","volume":"4 1","pages":""},"PeriodicalIF":13.9000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature ecology & evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41559-024-02575-6","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Global agreements to reduce the extinction risk of migratory species depend critically on intersecting migratory connectivity—the linking of individuals between regions in different seasons—and spatial patterns of environmental change. Here we integrate movement data from >329,000 migratory birds of 112 species to develop a parameter representing exposure to global change: multispecies migratory connectivity. We then combine exposure with projected climate and land-cover changes as a measure of hazard and species conservation assessment scores as a metric of vulnerability to estimate the relative risk of migratory bird population declines across the Western Hemisphere. Multispecies migratory connectivity (exposure) is the strongest driver of risk relative to hazard and vulnerability, indicating the importance of synthesizing connectivity across species to comprehensively assess risk. Connections between breeding regions in Canada and non-breeding regions in South America are at the greatest risk, which underscores the particular susceptibility of long-distance migrants. Over half (54%) of the connections categorized as very high risk include breeding regions in the eastern United States. This three-part framework serves as an ecological risk assessment designed specifically for migratory species, providing both decision support for global biodiversity conservation and opportunities for intergovernmental collaboration to sustain migratory bird populations year-round.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature ecology & evolution
Nature ecology & evolution Agricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
22.20
自引率
2.40%
发文量
282
期刊介绍: Nature Ecology & Evolution is interested in the full spectrum of ecological and evolutionary biology, encompassing approaches at the molecular, organismal, population, community and ecosystem levels, as well as relevant parts of the social sciences. Nature Ecology & Evolution provides a place where all researchers and policymakers interested in all aspects of life's diversity can come together to learn about the most accomplished and significant advances in the field and to discuss topical issues. An online-only monthly journal, our broad scope ensures that the research published reaches the widest possible audience of scientists.
期刊最新文献
Strategic planning could reduce farm-scale mariculture impacts on marine biodiversity while expanding seafood production Mortality in European lynxes Indigenous communities share how to live with wildlife Ancient history of MX antiviral proteins Archaean green-light environments drove the evolution of cyanobacteria’s light-harvesting system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1