Bioactive Zn–V–Si–Ca Glass Nanoparticle Hydrogel Microneedles with Antimicrobial and Antioxidant Properties for Bone Regeneration in Diabetic Periodontitis

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Nano Pub Date : 2025-02-17 DOI:10.1021/acsnano.4c15227
Ling Li, Wen Qin, Tao Ye, Chenyu Wang, Zixuan Qin, Yuxuan Ma, Zhao Mu, Kai Jiao, Franklin R. Tay, Wen Niu, Lina Niu
{"title":"Bioactive Zn–V–Si–Ca Glass Nanoparticle Hydrogel Microneedles with Antimicrobial and Antioxidant Properties for Bone Regeneration in Diabetic Periodontitis","authors":"Ling Li, Wen Qin, Tao Ye, Chenyu Wang, Zixuan Qin, Yuxuan Ma, Zhao Mu, Kai Jiao, Franklin R. Tay, Wen Niu, Lina Niu","doi":"10.1021/acsnano.4c15227","DOIUrl":null,"url":null,"abstract":"Periodontitis is a chronic inflammatory condition affecting the periodontal tissue. This condition worsens in diabetic patients due to oxidative stress and inflammation. Herein, we investigated a treatment using bioactive Zn–V–Si–Ca glass nanoparticle hydrogel microneedles. The microneedles contain bioactive glass nanoparticles codoped with zinc and vanadium ions. They also include gallic acid and oxidized methacrylated hyaluronic acid. These microneedles address bacterial dysbiosis and oxidative stress in diabetic periodontitis. They provide antibacterial and antioxidant effects. The microneedles deliver therapeutic agents directly into the gingival tissue. This enhances drug retention and absorption by penetrating the mucosal barrier. <i>In vitro</i> studies demonstrated biocompatibility, excellent antioxidant properties, and acceptable mechanical properties. Meanwhile, the microneedle patches demonstrated antibacterial properties effective against a Gram-negative periodontal pathogen as well as a Gram-positive oral bacterium. <i>In vivo</i> experiments were performed using a diabetic rat model with periodontitis. Results showed significant improvement in alveolar bone regeneration. The hydrogel modulated the inflammatory microenvironment effectively. Ribonucleic acid sequencing revealed downregulation of JAK-STAT and NF-κB inflammation signaling pathways. This work presents a distinctive approach to suppressing the inflammatory response and modulate immune responses for the purpose of treating diabetic periodontitis early.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"64 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c15227","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Periodontitis is a chronic inflammatory condition affecting the periodontal tissue. This condition worsens in diabetic patients due to oxidative stress and inflammation. Herein, we investigated a treatment using bioactive Zn–V–Si–Ca glass nanoparticle hydrogel microneedles. The microneedles contain bioactive glass nanoparticles codoped with zinc and vanadium ions. They also include gallic acid and oxidized methacrylated hyaluronic acid. These microneedles address bacterial dysbiosis and oxidative stress in diabetic periodontitis. They provide antibacterial and antioxidant effects. The microneedles deliver therapeutic agents directly into the gingival tissue. This enhances drug retention and absorption by penetrating the mucosal barrier. In vitro studies demonstrated biocompatibility, excellent antioxidant properties, and acceptable mechanical properties. Meanwhile, the microneedle patches demonstrated antibacterial properties effective against a Gram-negative periodontal pathogen as well as a Gram-positive oral bacterium. In vivo experiments were performed using a diabetic rat model with periodontitis. Results showed significant improvement in alveolar bone regeneration. The hydrogel modulated the inflammatory microenvironment effectively. Ribonucleic acid sequencing revealed downregulation of JAK-STAT and NF-κB inflammation signaling pathways. This work presents a distinctive approach to suppressing the inflammatory response and modulate immune responses for the purpose of treating diabetic periodontitis early.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
期刊最新文献
Regulating Na/Mn Antisite Defects and Reactivating Anomalous Jahn–Teller Behavior for Na4Fe1.5Mn1.5(PO4)2(P2O7) Cathode Material with Superior Performance Fuzzy Band Structure of Quantum Dots by Bloch Orbital Expansion: Unconventional Insights into Geometric-Electronic Structure Relations Carborane Nanomembranes Brightening of Optical Forbidden Interlayer Quantum Emitters in WSe2 Homobilayers Issue Editorial Masthead
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1