Anisotropic diffusion of high-energy cosmic rays in magnetohydrodynamic turbulence

IF 5.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Astronomy & Astrophysics Pub Date : 2025-02-14 DOI:10.1051/0004-6361/202452541
Na-Na Gao, Jian-Fu Zhang
{"title":"Anisotropic diffusion of high-energy cosmic rays in magnetohydrodynamic turbulence","authors":"Na-Na Gao, Jian-Fu Zhang","doi":"10.1051/0004-6361/202452541","DOIUrl":null,"url":null,"abstract":"<i>Context.<i/> The origin of cosmic rays (CRs) and how they propagate remain unclear. Studying the propagation of CRs in magnetohydrodynamic (MHD) turbulence can help to comprehend many open issues related to CR origin and the role of turbulent magnetic fields.<i>Aims.<i/> To comprehend the phenomenon of slow diffusion in the near-source region, we study the interactions of CRs with the ambient turbulent magnetic field to reveal their universal laws.<i>Methods.<i/> We numerically study the interactions of CRs with the ambient turbulent magnetic field, considering pulsar wind nebula as a general research case. Taking the magnetization parameter and turbulence spectral index as free parameters, together with radiative losses, we perform three group simulations to analyze the CR spectral, spatial distributions, and possible CR diffusion types.<i>Results.<i/> Our studies demonstrate that (1) CR energy density decays with both its effective radius and kinetic energy in the form of power-law distributions; (2) the morphology of the CR spatial distribution strongly depends on the properties of magnetic turbulence and the viewing angle; (3) CRs suffer a slow diffusion near the source and a fast or normal diffusion away from the source; (4) the existence of a power-law relationship between the averaged CR energy density and the magnetization parameter is independent of both CR energy and radiative losses; and (5) radiative losses can suppress CR anisotropic diffusion and soften the power-law distribution of CR energy density.<i>Conclusions.<i/> The distribution law established between turbulent magnetic fields and CRs presents an intrinsic property, providing a convenient way to understand complex astrophysical processes related to turbulence cascades.","PeriodicalId":8571,"journal":{"name":"Astronomy & Astrophysics","volume":"1 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy & Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/0004-6361/202452541","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Context. The origin of cosmic rays (CRs) and how they propagate remain unclear. Studying the propagation of CRs in magnetohydrodynamic (MHD) turbulence can help to comprehend many open issues related to CR origin and the role of turbulent magnetic fields.Aims. To comprehend the phenomenon of slow diffusion in the near-source region, we study the interactions of CRs with the ambient turbulent magnetic field to reveal their universal laws.Methods. We numerically study the interactions of CRs with the ambient turbulent magnetic field, considering pulsar wind nebula as a general research case. Taking the magnetization parameter and turbulence spectral index as free parameters, together with radiative losses, we perform three group simulations to analyze the CR spectral, spatial distributions, and possible CR diffusion types.Results. Our studies demonstrate that (1) CR energy density decays with both its effective radius and kinetic energy in the form of power-law distributions; (2) the morphology of the CR spatial distribution strongly depends on the properties of magnetic turbulence and the viewing angle; (3) CRs suffer a slow diffusion near the source and a fast or normal diffusion away from the source; (4) the existence of a power-law relationship between the averaged CR energy density and the magnetization parameter is independent of both CR energy and radiative losses; and (5) radiative losses can suppress CR anisotropic diffusion and soften the power-law distribution of CR energy density.Conclusions. The distribution law established between turbulent magnetic fields and CRs presents an intrinsic property, providing a convenient way to understand complex astrophysical processes related to turbulence cascades.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
磁流体动力湍流中高能宇宙射线的各向异性扩散
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Astronomy & Astrophysics
Astronomy & Astrophysics 地学天文-天文与天体物理
CiteScore
10.20
自引率
27.70%
发文量
2105
审稿时长
1-2 weeks
期刊介绍: Astronomy & Astrophysics is an international Journal that publishes papers on all aspects of astronomy and astrophysics (theoretical, observational, and instrumental) independently of the techniques used to obtain the results.
期刊最新文献
Constraints on the properties of macroscopic transport in the Sun from combined lithium and beryllium depletion PANOPTICON: A novel deep learning model to detect single transit events with no prior data filtering in PLATO light curves Exploring quasar evolution with proximate molecular absorbers: Insights from the kinematics of highly ionized nitrogen⋆ Blue monsters at z > 10: Where all their dust has gone Gamma-ray flares from the jet of the blazar CTA 102 in 2016–2018
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1