A numerical study of unusual flux decreases for cosmic ray protons and electrons observed by Alpha Magnetic Spectrometer in 2017

IF 5.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Astronomy & Astrophysics Pub Date : 2025-02-14 DOI:10.1051/0004-6361/202452416
Yadi Yang, Xi Luo, Xiaojian Song, Weiwei Xu, Marius S. Potgieter
{"title":"A numerical study of unusual flux decreases for cosmic ray protons and electrons observed by Alpha Magnetic Spectrometer in 2017","authors":"Yadi Yang, Xi Luo, Xiaojian Song, Weiwei Xu, Marius S. Potgieter","doi":"10.1051/0004-6361/202452416","DOIUrl":null,"url":null,"abstract":"<i>Aims.<i/> Alpha Magnetic Spectrometer (AMS), installed on the International Space Station, delivers precision measurements of cosmic proton fluxes and electron fluxes, providing unique inputs to further improve our understanding of the solar modulation of cosmic protons and electrons. The latest measurements published by AMS show significant decreases in daily cosmic proton fluxes and electron fluxes in the second half of 2017 (approximately from June 11, 2017 to December 23, 2017). A special structure, known as a loop, appears in the electron-proton hysteresis during this period. These declining fluxes, as well as their recovery toward solar minimum modulation, could be attributed to solar wind structures such as global merged interaction regions (GMIRs), which can affect cosmic ray flux for several months, as well as coronal mass ejections (CMEs). We aim to find the reason for the decrease and clarify the solar modulation mechanism underlying the loop structure.<i>Methods.<i/> We developed a 3D numerical model based on Parker transport equation, which is solved as a set of stochastic differential equations, combined with diffusion barriers propagating away from the Sun. Correspondingly, the relevant parameters can be tuned up.<i>Results.<i/> The unusual changes in cosmic proton fluxes and electron fluxes in the second half of 2017 could be caused by CMEs and GMIRs. The decreases in these fluxes in 2017, with rigidities below 11 GV, have been successfully reproduced. Daily variations at Earth in terms of the diffusion coefficients (and their mean-free paths) were subsequently obtained. Furthermore, our simulation reveals that the electron-proton hysteresis loop structure in 2017 results from the different responses of protons and electrons to solar modulation, especially with respect to drift and diffusion processes in the heliosphere.","PeriodicalId":8571,"journal":{"name":"Astronomy & Astrophysics","volume":"49 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy & Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/0004-6361/202452416","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Aims. Alpha Magnetic Spectrometer (AMS), installed on the International Space Station, delivers precision measurements of cosmic proton fluxes and electron fluxes, providing unique inputs to further improve our understanding of the solar modulation of cosmic protons and electrons. The latest measurements published by AMS show significant decreases in daily cosmic proton fluxes and electron fluxes in the second half of 2017 (approximately from June 11, 2017 to December 23, 2017). A special structure, known as a loop, appears in the electron-proton hysteresis during this period. These declining fluxes, as well as their recovery toward solar minimum modulation, could be attributed to solar wind structures such as global merged interaction regions (GMIRs), which can affect cosmic ray flux for several months, as well as coronal mass ejections (CMEs). We aim to find the reason for the decrease and clarify the solar modulation mechanism underlying the loop structure.Methods. We developed a 3D numerical model based on Parker transport equation, which is solved as a set of stochastic differential equations, combined with diffusion barriers propagating away from the Sun. Correspondingly, the relevant parameters can be tuned up.Results. The unusual changes in cosmic proton fluxes and electron fluxes in the second half of 2017 could be caused by CMEs and GMIRs. The decreases in these fluxes in 2017, with rigidities below 11 GV, have been successfully reproduced. Daily variations at Earth in terms of the diffusion coefficients (and their mean-free paths) were subsequently obtained. Furthermore, our simulation reveals that the electron-proton hysteresis loop structure in 2017 results from the different responses of protons and electrons to solar modulation, especially with respect to drift and diffusion processes in the heliosphere.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Astronomy & Astrophysics
Astronomy & Astrophysics 地学天文-天文与天体物理
CiteScore
10.20
自引率
27.70%
发文量
2105
审稿时长
1-2 weeks
期刊介绍: Astronomy & Astrophysics is an international Journal that publishes papers on all aspects of astronomy and astrophysics (theoretical, observational, and instrumental) independently of the techniques used to obtain the results.
期刊最新文献
Constraints on the properties of macroscopic transport in the Sun from combined lithium and beryllium depletion PANOPTICON: A novel deep learning model to detect single transit events with no prior data filtering in PLATO light curves Exploring quasar evolution with proximate molecular absorbers: Insights from the kinematics of highly ionized nitrogen⋆ Blue monsters at z > 10: Where all their dust has gone Gamma-ray flares from the jet of the blazar CTA 102 in 2016–2018
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1