{"title":"Forecasts of effects of beam systematics and deprojection on the third-generation ground-based cosmic microwave background experiment","authors":"Jiazheng Dou, Jiakang Han, Wen Zhao, Bin Hu","doi":"10.1051/0004-6361/202452588","DOIUrl":null,"url":null,"abstract":"The ground-based cosmic microwave background (CMB) experiments are susceptible to various instrumental errors, especially for <i>B<i/>-mode measurements. The difference between the response of two polarized detectors, referred to as the beam mismatch, would induce a <i>T<i/> → <i>P<i/> leakage when the detector pair is differenced to cancel the unpolarized signal. We applied the deprojection technique on the time-ordered mock data to mitigate the systematic contamination caused by beam mismatches by assuming the third-generation ground-based CMB experiment (S3). Our results show that the deprojection effectively recovered the input power spectra. We adopted the Needlet ILC (NILC) and constrained ILC (cILC) methods to reconstruct the foreground-cleaned <i>TEB<i/> maps, and we evaluated the level of residual systematic errors after the foreground cleaning pipeline by comparing the power spectra between the systematics-added data after deprojection and the systematics-free data. The results show that the residual beam systematics cleaned by deprojection do not bias the CMB measurements of the <i>T<i/>, <i>E<i/>, and <i>B<i/> modes nor the CMB lensing reconstruction or the estimation of the tensor-to-scalar ratio under the S3 sensitivity.","PeriodicalId":8571,"journal":{"name":"Astronomy & Astrophysics","volume":"10 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy & Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/0004-6361/202452588","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The ground-based cosmic microwave background (CMB) experiments are susceptible to various instrumental errors, especially for B-mode measurements. The difference between the response of two polarized detectors, referred to as the beam mismatch, would induce a T → P leakage when the detector pair is differenced to cancel the unpolarized signal. We applied the deprojection technique on the time-ordered mock data to mitigate the systematic contamination caused by beam mismatches by assuming the third-generation ground-based CMB experiment (S3). Our results show that the deprojection effectively recovered the input power spectra. We adopted the Needlet ILC (NILC) and constrained ILC (cILC) methods to reconstruct the foreground-cleaned TEB maps, and we evaluated the level of residual systematic errors after the foreground cleaning pipeline by comparing the power spectra between the systematics-added data after deprojection and the systematics-free data. The results show that the residual beam systematics cleaned by deprojection do not bias the CMB measurements of the T, E, and B modes nor the CMB lensing reconstruction or the estimation of the tensor-to-scalar ratio under the S3 sensitivity.
期刊介绍:
Astronomy & Astrophysics is an international Journal that publishes papers on all aspects of astronomy and astrophysics (theoretical, observational, and instrumental) independently of the techniques used to obtain the results.