Chet R. Bhatt , Jinesh C. Jain , Alexander A. Bol'shakov , Dustin L. McIntyre
{"title":"Chemistry imaging and distribution analysis of rare earth elements in coal using LIBS and LA-ICP-MS instruments","authors":"Chet R. Bhatt , Jinesh C. Jain , Alexander A. Bol'shakov , Dustin L. McIntyre","doi":"10.1016/j.coal.2025.104710","DOIUrl":null,"url":null,"abstract":"<div><div>Currently, demand for rare earth elements (REEs) increased significantly. Coal is actively evaluated as potential economic sources for extraction of REEs. In this work, laser-induced breakdown spectroscopy (LIBS) was evaluated for rapid estimation of REEs content and their distribution in the natural coal samples. The results were compared with similar laser ablation–inductively coupled plasma–mass spectrometry (LA-ICP-MS) measurements. Thirteen coal samples (nine standard samples and five natural samples) were used in this study. Powder samples were pressed into pellets while coal chunks were directly ablated for data recording. Pellets of the powder standard samples were used to optimize the data acquisition system and then data recorded with this optimized system was used to identify the proper data acquisition and analysis models. After establishing the proper data acquisition system and analysis model using the standard samples, natural coal samples in powder form and their chunks were utilized to record LIBS and LA-ICP-MS spectra. Multivariate calibration models were developed using four of the natural samples, which were evaluated by predicting the REE content in the fifth sample. Principal component analysis was performed on the LIBS data obtained from the natural samples and it classified all the samples with high accuracy. Two-dimensional (2D) elemental mapping on coal chunk samples was also performed using both LIBS and LA-ICP-MS to study the distribution of REEs in the samples. The resulting elemental images and their correlations can be used to infer mineral distributions.</div></div>","PeriodicalId":13864,"journal":{"name":"International Journal of Coal Geology","volume":"301 ","pages":"Article 104710"},"PeriodicalIF":5.6000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Coal Geology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166516225000278","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Currently, demand for rare earth elements (REEs) increased significantly. Coal is actively evaluated as potential economic sources for extraction of REEs. In this work, laser-induced breakdown spectroscopy (LIBS) was evaluated for rapid estimation of REEs content and their distribution in the natural coal samples. The results were compared with similar laser ablation–inductively coupled plasma–mass spectrometry (LA-ICP-MS) measurements. Thirteen coal samples (nine standard samples and five natural samples) were used in this study. Powder samples were pressed into pellets while coal chunks were directly ablated for data recording. Pellets of the powder standard samples were used to optimize the data acquisition system and then data recorded with this optimized system was used to identify the proper data acquisition and analysis models. After establishing the proper data acquisition system and analysis model using the standard samples, natural coal samples in powder form and their chunks were utilized to record LIBS and LA-ICP-MS spectra. Multivariate calibration models were developed using four of the natural samples, which were evaluated by predicting the REE content in the fifth sample. Principal component analysis was performed on the LIBS data obtained from the natural samples and it classified all the samples with high accuracy. Two-dimensional (2D) elemental mapping on coal chunk samples was also performed using both LIBS and LA-ICP-MS to study the distribution of REEs in the samples. The resulting elemental images and their correlations can be used to infer mineral distributions.
期刊介绍:
The International Journal of Coal Geology deals with fundamental and applied aspects of the geology and petrology of coal, oil/gas source rocks and shale gas resources. The journal aims to advance the exploration, exploitation and utilization of these resources, and to stimulate environmental awareness as well as advancement of engineering for effective resource management.