El Bouazzaoui Imane , Ait Elbaz Aicha , Ait Brahim Yassine , Machay Hicham , Bougadir Blaid
{"title":"Future groundwater drought analysis under data scarcity using MedCORDEX regional climatic models and machine learning: The case of the Haouz Aquifer","authors":"El Bouazzaoui Imane , Ait Elbaz Aicha , Ait Brahim Yassine , Machay Hicham , Bougadir Blaid","doi":"10.1016/j.ejrh.2025.102249","DOIUrl":null,"url":null,"abstract":"<div><h3>Study region</h3><div>The Haouz aquifer, situated in central Morocco, a data-scarce region.</div></div><div><h3>Study focus</h3><div>Groundwater resources in semi-arid regions face increasing threats from climate change, particularly due to warming and overexploitation. However, data scarcity limits the ability to monitor and predict groundwater changes accurately. This study addresses this challenge by predicting future drought conditions in the Haouz aquifer using SPI and SPEI climatic drought indices, Machine Learning models, and Med-CORDEX regional climate models under RCP 4.5 and 8.5 scenarios.</div></div><div><h3>New Hydrological Insights for the Region</h3><div>This study is the first in the region to predict groundwater drought based on precipitation and temperature data, relying on the principle of drought propagation. The comparative analysis of the machine learning models shows that Random Forest stands out for its superior predictive performance, influenced by annual trends and long-term climatic indices, with significant contributions from geographical variables. The results indicate a combined influence of land use and natural characteristics on the drought of the Haouz aquifer, following a longitudinal variation and showing a trend towards decreasing variability from the mid- to long-term. Additionally, extreme drought conditions are expected to intensify in most study points particularly under RCP 8.5. The eastern area of the aquifer remains the least impacted by this future trend, continuing to reflect normal drought conditions even in the long term under RCP 8.5.</div></div>","PeriodicalId":48620,"journal":{"name":"Journal of Hydrology-Regional Studies","volume":"58 ","pages":"Article 102249"},"PeriodicalIF":4.7000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology-Regional Studies","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214581825000734","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0
Abstract
Study region
The Haouz aquifer, situated in central Morocco, a data-scarce region.
Study focus
Groundwater resources in semi-arid regions face increasing threats from climate change, particularly due to warming and overexploitation. However, data scarcity limits the ability to monitor and predict groundwater changes accurately. This study addresses this challenge by predicting future drought conditions in the Haouz aquifer using SPI and SPEI climatic drought indices, Machine Learning models, and Med-CORDEX regional climate models under RCP 4.5 and 8.5 scenarios.
New Hydrological Insights for the Region
This study is the first in the region to predict groundwater drought based on precipitation and temperature data, relying on the principle of drought propagation. The comparative analysis of the machine learning models shows that Random Forest stands out for its superior predictive performance, influenced by annual trends and long-term climatic indices, with significant contributions from geographical variables. The results indicate a combined influence of land use and natural characteristics on the drought of the Haouz aquifer, following a longitudinal variation and showing a trend towards decreasing variability from the mid- to long-term. Additionally, extreme drought conditions are expected to intensify in most study points particularly under RCP 8.5. The eastern area of the aquifer remains the least impacted by this future trend, continuing to reflect normal drought conditions even in the long term under RCP 8.5.
期刊介绍:
Journal of Hydrology: Regional Studies publishes original research papers enhancing the science of hydrology and aiming at region-specific problems, past and future conditions, analysis, review and solutions. The journal particularly welcomes research papers that deliver new insights into region-specific hydrological processes and responses to changing conditions, as well as contributions that incorporate interdisciplinarity and translational science.