Effects of nanoscale zero-valent iron loaded biochar on the fate of phenanthrene in soil-radish (Raphanus sativus L. var.radculus pers) system

Lianzhou Shen , Yue Cai , Juan Gao
{"title":"Effects of nanoscale zero-valent iron loaded biochar on the fate of phenanthrene in soil-radish (Raphanus sativus L. var.radculus pers) system","authors":"Lianzhou Shen ,&nbsp;Yue Cai ,&nbsp;Juan Gao","doi":"10.1016/j.eehl.2025.100134","DOIUrl":null,"url":null,"abstract":"<div><div>Nanoscale zero-valent iron loaded on biochar (nZVI@BC) has been proven to be effective in activating persulfate to remediate soil organic pollutants. However, studies on subsequent plant growth and microbial community changes in remediated soil remain limited. In this study, nZVI@BC, nZVI, and nanoscale biochar (nBC) were ball-mill produced and applied as amendments in pot experiments with PAH-contaminated soil to investigate their impacts on soil-crop (radish, <em>Raphanus sativus</em> L.) systems, and the widely distributed phenanthrene (Phe) was selected as model pollutant. The results indicate that nZVI@BC could induce more (75%) Phe accumulation in radish compared to the control treatment, but did not result in significant differences in plant biomass or enzyme activity. In Phe non-contaminated treatments, the Fe content of radish shoots increased from 86.87 ± 5.61 mg/kg DW without material application to 125.20 ± 11.93 mg/kg DW with nZVI@BC, while no significant differences were observed in roots. nZVI@BC and nBC increased the non-desorbed fraction of PAHs with low bio-availability by 13.6% and 10.2%, respectively, after 45 days compared to the control treatment. Illumina MiSeq sequencing revealed that nZVI@BC did not adversely affect the richness and diversity of soil microbial communities. Instead, it promoted the enrichment of bacteria related to the degradation of organic pollutants, such as <em>Lysobacter</em> and <em>Spingomonas</em>. The findings suggest that nZVI@BC after chemical oxidation remediation might be harmful to subsequent plants and ecosystems but much better than nZVI alone. The amount of nZVI@BC should be accurately calculated before chemical oxidation remediation.</div></div>","PeriodicalId":29813,"journal":{"name":"Eco-Environment & Health","volume":"4 1","pages":"Article 100134"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eco-Environment & Health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772985025000031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nanoscale zero-valent iron loaded on biochar (nZVI@BC) has been proven to be effective in activating persulfate to remediate soil organic pollutants. However, studies on subsequent plant growth and microbial community changes in remediated soil remain limited. In this study, nZVI@BC, nZVI, and nanoscale biochar (nBC) were ball-mill produced and applied as amendments in pot experiments with PAH-contaminated soil to investigate their impacts on soil-crop (radish, Raphanus sativus L.) systems, and the widely distributed phenanthrene (Phe) was selected as model pollutant. The results indicate that nZVI@BC could induce more (75%) Phe accumulation in radish compared to the control treatment, but did not result in significant differences in plant biomass or enzyme activity. In Phe non-contaminated treatments, the Fe content of radish shoots increased from 86.87 ± 5.61 mg/kg DW without material application to 125.20 ± 11.93 mg/kg DW with nZVI@BC, while no significant differences were observed in roots. nZVI@BC and nBC increased the non-desorbed fraction of PAHs with low bio-availability by 13.6% and 10.2%, respectively, after 45 days compared to the control treatment. Illumina MiSeq sequencing revealed that nZVI@BC did not adversely affect the richness and diversity of soil microbial communities. Instead, it promoted the enrichment of bacteria related to the degradation of organic pollutants, such as Lysobacter and Spingomonas. The findings suggest that nZVI@BC after chemical oxidation remediation might be harmful to subsequent plants and ecosystems but much better than nZVI alone. The amount of nZVI@BC should be accurately calculated before chemical oxidation remediation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Eco-Environment & Health
Eco-Environment & Health 环境科学与生态学-生态、环境与健康
CiteScore
11.00
自引率
0.00%
发文量
18
审稿时长
22 days
期刊介绍: Eco-Environment & Health (EEH) is an international and multidisciplinary peer-reviewed journal designed for publications on the frontiers of the ecology, environment and health as well as their related disciplines. EEH focuses on the concept of “One Health” to promote green and sustainable development, dealing with the interactions among ecology, environment and health, and the underlying mechanisms and interventions. Our mission is to be one of the most important flagship journals in the field of environmental health. Scopes EEH covers a variety of research areas, including but not limited to ecology and biodiversity conservation, environmental behaviors and bioprocesses of emerging contaminants, human exposure and health effects, and evaluation, management and regulation of environmental risks. The key topics of EEH include: 1) Ecology and Biodiversity Conservation Biodiversity Ecological restoration Ecological safety Protected area 2) Environmental and Biological Fate of Emerging Contaminants Environmental behaviors Environmental processes Environmental microbiology 3) Human Exposure and Health Effects Environmental toxicology Environmental epidemiology Environmental health risk Food safety 4) Evaluation, Management and Regulation of Environmental Risks Chemical safety Environmental policy Health policy Health economics Environmental remediation
期刊最新文献
Corrigendum to “A systematic review of the impacts of exposure to micro- and nano-plastics on human tissue accumulation and health” [Eco-Environ. Health (2023)195–207] The wheel of time: The environmental dance of aged micro- and nanoplastics and their biological resonance Microplastics enhance the prevalence of antibiotic resistance genes in mariculture sediments by enriching host bacteria and promoting horizontal gene transfer Effects of nanoscale zero-valent iron loaded biochar on the fate of phenanthrene in soil-radish (Raphanus sativus L. var.radculus pers) system Diagnostic performance of allele-specific RT-qPCR and genomic sequencing in wastewater-based surveillance of SARS-CoV-2
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1