Effect of manufacturing conditions on morphology development in rapid stamp formed polyamide/glass fibre composite laminate components

IF 8.1 2区 材料科学 Q1 ENGINEERING, MANUFACTURING Composites Part A: Applied Science and Manufacturing Pub Date : 2025-02-13 DOI:10.1016/j.compositesa.2025.108804
Ellen L. Heeley , Neil Reynolds , William Hamby , Catherine A. Kelly , Michael J. Jenkins , Darren J. Hughes
{"title":"Effect of manufacturing conditions on morphology development in rapid stamp formed polyamide/glass fibre composite laminate components","authors":"Ellen L. Heeley ,&nbsp;Neil Reynolds ,&nbsp;William Hamby ,&nbsp;Catherine A. Kelly ,&nbsp;Michael J. Jenkins ,&nbsp;Darren J. Hughes","doi":"10.1016/j.compositesa.2025.108804","DOIUrl":null,"url":null,"abstract":"<div><div>The effect of manufacturing conditions on the morphology of an industrially-processed 11-ply polyamide/glass fibre (PA66-GF60) laminate was investigated. Through-thickness temperature variation during the manufacturing process (pre-heating, stamp forming, demoulding) was revealed via eight inter-ply thermocouples. Thermal and X-ray analysis provided insights into process-induced polymer crystallinity and morphology through the laminate thickness. Cooling rates up to ∼ 2100 °C/min were observed in outer plies, compared to ∼ 420 °C/min for inner plies. A self-heating exothermal phenomenon was observed during crystallisation of the inner layers, leading to increased core crystallinity. X-ray diffraction revealed differences in preferred polymer orientation between the plies. For the inner plies, additional mobility from slower cooling leads to partially oriented crystallites along the glass fibre axis and a well-developed lamellar macromorphology. The rapidly cooled outer plies showed unoriented morphology, without long-range ordering. The work provides detailed understanding of polymer morphology for an industrially-relevant high-volume manufacturing process for thermoplastic matrix components.</div></div>","PeriodicalId":282,"journal":{"name":"Composites Part A: Applied Science and Manufacturing","volume":"192 ","pages":"Article 108804"},"PeriodicalIF":8.1000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part A: Applied Science and Manufacturing","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359835X25000983","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

The effect of manufacturing conditions on the morphology of an industrially-processed 11-ply polyamide/glass fibre (PA66-GF60) laminate was investigated. Through-thickness temperature variation during the manufacturing process (pre-heating, stamp forming, demoulding) was revealed via eight inter-ply thermocouples. Thermal and X-ray analysis provided insights into process-induced polymer crystallinity and morphology through the laminate thickness. Cooling rates up to ∼ 2100 °C/min were observed in outer plies, compared to ∼ 420 °C/min for inner plies. A self-heating exothermal phenomenon was observed during crystallisation of the inner layers, leading to increased core crystallinity. X-ray diffraction revealed differences in preferred polymer orientation between the plies. For the inner plies, additional mobility from slower cooling leads to partially oriented crystallites along the glass fibre axis and a well-developed lamellar macromorphology. The rapidly cooled outer plies showed unoriented morphology, without long-range ordering. The work provides detailed understanding of polymer morphology for an industrially-relevant high-volume manufacturing process for thermoplastic matrix components.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
制造条件对快速冲压成形聚酰胺/玻璃纤维复合材料层压件形貌发展的影响
研究了制备条件对工业加工的11层聚酰胺/玻璃纤维(PA66-GF60)层压板形貌的影响。通过8个热电偶揭示了在制造过程(预热、冲压成形、脱模)中厚度的温度变化。热分析和x射线分析通过层压厚度提供了对工艺诱导聚合物结晶度和形态的深入了解。外层的冷却速率高达~ 2100°C/min,而内层的冷却速率为~ 420°C/min。在内层结晶过程中观察到自热放热现象,导致核心结晶度增加。x射线衍射显示了层间聚合物择优取向的差异。对于内部层,较慢冷却带来的额外迁移率导致沿玻璃纤维轴部分取向的晶体和发育良好的片层宏观形貌。快速冷却的外层形貌无取向,无长程有序。这项工作为热塑性基质组件的工业相关大批量制造工艺提供了对聚合物形态的详细了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Composites Part A: Applied Science and Manufacturing
Composites Part A: Applied Science and Manufacturing 工程技术-材料科学:复合
CiteScore
15.20
自引率
5.70%
发文量
492
审稿时长
30 days
期刊介绍: Composites Part A: Applied Science and Manufacturing is a comprehensive journal that publishes original research papers, review articles, case studies, short communications, and letters covering various aspects of composite materials science and technology. This includes fibrous and particulate reinforcements in polymeric, metallic, and ceramic matrices, as well as 'natural' composites like wood and biological materials. The journal addresses topics such as properties, design, and manufacture of reinforcing fibers and particles, novel architectures and concepts, multifunctional composites, advancements in fabrication and processing, manufacturing science, process modeling, experimental mechanics, microstructural characterization, interfaces, prediction and measurement of mechanical, physical, and chemical behavior, and performance in service. Additionally, articles on economic and commercial aspects, design, and case studies are welcomed. All submissions undergo rigorous peer review to ensure they contribute significantly and innovatively, maintaining high standards for content and presentation. The editorial team aims to expedite the review process for prompt publication.
期刊最新文献
Editorial Board Influence of 3D printing path and continuous Flax yarn reinforcement on the performance of additively manufactured T-joints for large-scale components Ultrahigh-strength polybenzoxazine@polyimide nanofiber aerogels enabled by coaxial 1D building blocks via semi-crystalline structuring Multiscale computational modelling of novel 3D printed structure of cellulose nanocrystal-reinforced polymer composites Hyperbranched polyborosiloxane as a multifunctional flame retardant for simultaneously enhancing fire safety, mechanical properties, and hydrophobicity of polycarbonate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1