Thermal management of high concentrator photovoltaic module using an optimized microchannel heat sink

IF 9.5 Q1 ENERGY & FUELS Energy nexus Pub Date : 2025-02-09 DOI:10.1016/j.nexus.2025.100376
Salah Haridy , Ali Radwan , Ahmed Saad Soliman , Essam Abo-Zahhad , Osama Abdelrehim
{"title":"Thermal management of high concentrator photovoltaic module using an optimized microchannel heat sink","authors":"Salah Haridy ,&nbsp;Ali Radwan ,&nbsp;Ahmed Saad Soliman ,&nbsp;Essam Abo-Zahhad ,&nbsp;Osama Abdelrehim","doi":"10.1016/j.nexus.2025.100376","DOIUrl":null,"url":null,"abstract":"<div><div>Microchannel heat sinks (MCHSs) are compact and powerful thermal management devices for concentrator photovoltaic (CPV) modules. This study optimizes the thermal-hydraulic performance of a new MCHS, which is then integrated with a CPV module to ensure efficient thermal management and safe operation. An integrated framework combining computational fluid dynamics simulation and response surface methodology is proposed to analyze and optimize the thermal-hydraulic performance of the MCHS fitted with a twisted tape insert. The effects of fluid inlet velocity, insert initial distance, insert pitch, and insert length on various responses, including the MCHS thermal resistance (<em>R</em><sub><em>th</em></sub>), rate of the entropy generation ratio (<em>S</em><sub><em>gen</em></sub><em>/S</em><sub><em>gen,o</em></sub>), heated wall temperature non-uniformity ratio (<em>ΔT/ΔT</em><sub><em>o</em></sub>), Nusselt number (<em>Nu</em>), and figure of merits (FOM) are comprehensively evaluated. The results reveal that to minimize the <em>ΔT/ΔT</em><sub><em>o</em></sub>, <em>R</em><sub><em>th</em></sub>, and <em>S</em><sub><em>gen</em></sub><em>/S</em><sub><em>gen,o</em></sub> while maximizing <em>Nu</em> and FOM, a fluid velocity of 2.11 m/s, an initial distance of 7.47 mm, a pitch of 2 mm, and a twisted tape length of approximately 30 mm should be used. Under these conditions, the predicted responses are <em>R</em><sub><em>th</em></sub> = 0.775, <em>Nu</em> = 19.232, FOM = 1.271, S<sub>gen</sub>/S<sub>gen,</sub><em><sub>o</sub></em> = 0.596 and <em>ΔT/ΔT</em><sub><em>o</em></sub> = 0.274. Integrating these optimized MCHS dimensions with a CPV module operating at a solar concentration of 1000 suns results in a 22.5% reduction in the average CPV module temperature, compared to a smooth MCHS.</div></div>","PeriodicalId":93548,"journal":{"name":"Energy nexus","volume":"17 ","pages":"Article 100376"},"PeriodicalIF":9.5000,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy nexus","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772427125000178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Microchannel heat sinks (MCHSs) are compact and powerful thermal management devices for concentrator photovoltaic (CPV) modules. This study optimizes the thermal-hydraulic performance of a new MCHS, which is then integrated with a CPV module to ensure efficient thermal management and safe operation. An integrated framework combining computational fluid dynamics simulation and response surface methodology is proposed to analyze and optimize the thermal-hydraulic performance of the MCHS fitted with a twisted tape insert. The effects of fluid inlet velocity, insert initial distance, insert pitch, and insert length on various responses, including the MCHS thermal resistance (Rth), rate of the entropy generation ratio (Sgen/Sgen,o), heated wall temperature non-uniformity ratio (ΔT/ΔTo), Nusselt number (Nu), and figure of merits (FOM) are comprehensively evaluated. The results reveal that to minimize the ΔT/ΔTo, Rth, and Sgen/Sgen,o while maximizing Nu and FOM, a fluid velocity of 2.11 m/s, an initial distance of 7.47 mm, a pitch of 2 mm, and a twisted tape length of approximately 30 mm should be used. Under these conditions, the predicted responses are Rth = 0.775, Nu = 19.232, FOM = 1.271, Sgen/Sgen,o = 0.596 and ΔT/ΔTo = 0.274. Integrating these optimized MCHS dimensions with a CPV module operating at a solar concentration of 1000 suns results in a 22.5% reduction in the average CPV module temperature, compared to a smooth MCHS.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
采用优化微通道散热片的高聚光光伏组件热管理
微通道散热器(MCHSs)是聚光光伏(CPV)模块紧凑而强大的热管理设备。该研究优化了新型MCHS的热水力性能,然后将其与CPV模块集成,以确保高效的热管理和安全运行。提出了一种计算流体力学模拟与响应面法相结合的综合框架,用于分析和优化扭曲带嵌套MCHS的热工性能。综合评价了进口流体速度、插片初始距离、插片节距和插片长度对MCHS热阻(Rth)、熵产比(Sgen/Sgen,o)、被加热壁面温度非均匀性比(ΔT/ΔTo)、努selt数(Nu)和优点系数(FOM)等参数的影响。结果表明,要使ΔT/ΔTo、Rth和Sgen/Sgen、0最小,同时使Nu和FOM最大,流体流速为2.11 m/s,初始距离为7.47 mm,节距为2mm,扭带长度约为30 mm。在此条件下,预测响应为Rth = 0.775, Nu = 19.232, FOM = 1.271, Sgen/Sgen, 0 = 0.596, ΔT/ΔTo = 0.274。与光滑的MCHS相比,将这些优化的MCHS尺寸与在1000个太阳浓度下运行的CPV模块相结合,CPV模块的平均温度降低了22.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Energy nexus
Energy nexus Energy (General), Ecological Modelling, Renewable Energy, Sustainability and the Environment, Water Science and Technology, Agricultural and Biological Sciences (General)
CiteScore
7.70
自引率
0.00%
发文量
0
审稿时长
109 days
期刊最新文献
Regenerative agrivoltaics: Challenges and opportunities in Southern California’s Inland Empire region A hierarchical control system for optimizing crop production in a vertical farming container and its Internet of Things architecture The algal carbon diet: Repurposing volatile fatty acids into sustainable lipids Mitigating water evaporation and enhancing renewable energy with floating photovoltaic systems: An integrated approach to resource sustainability Synthesizing a novel precipitant for lithium recovery from aqueous solutions via Williamson’s reaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1