Estimation of mixture viscosity of ionic liquids using cubic two state equation of state and Eyring theory

IF 2.7 3区 工程技术 Q3 CHEMISTRY, PHYSICAL Fluid Phase Equilibria Pub Date : 2025-02-13 DOI:10.1016/j.fluid.2025.114385
Farag M.A. Altalbawy , F. Faez Sead , Krunal Vaghela , Anupam Yadav , Jayaprakash B , Mayank Kundlas , Ankayarkanni B , Sarbeswara Hota
{"title":"Estimation of mixture viscosity of ionic liquids using cubic two state equation of state and Eyring theory","authors":"Farag M.A. Altalbawy ,&nbsp;F. Faez Sead ,&nbsp;Krunal Vaghela ,&nbsp;Anupam Yadav ,&nbsp;Jayaprakash B ,&nbsp;Mayank Kundlas ,&nbsp;Ankayarkanni B ,&nbsp;Sarbeswara Hota","doi":"10.1016/j.fluid.2025.114385","DOIUrl":null,"url":null,"abstract":"<div><div>In this work the Cubic two State (CTS) equation of state (EoS) has been utilized to model the pure and mixed ionic liquids (ILs) viscosity. The free volume theory (FVT) and Eyring theory have been coupled with the CTS EoS to estimate the pure and mixture IL viscosity. The average relative deviation (ARD%) of pure imidazolium-based ILs viscosity has been obtained 0.42 %. The results show that the CTS+FVT can estimate the pure viscosity of ILs up to high pressure accurately. The mixture viscosity has been calculated using the CTS coupled with the Eyring theory and Redlich-Kister mixing rule. In this regard, four adjustable parameters of the thermal contribution of excess activation free energy in the Redlich-Kister mixing rule have been adjusted using the experimental viscosity data. The average ARD% value of mixture viscosity has been obtained 3.6 %. The effect of ideal, thermal, and mechanical contributions of excess Gibbs free energy of the Eyring theory on mixture viscosity has been studied. The results show that the thermal and mechanical terms have a minor effect on mixture viscosity. The CTS model results have been compared to the SAFT-VR Morse EoS. The result shows that a simple and robust model like CTS can be utilized as an alternative model for complex SAFT-based models to estimate the pure and mixture viscosity of IL-containing systems.</div></div>","PeriodicalId":12170,"journal":{"name":"Fluid Phase Equilibria","volume":"594 ","pages":"Article 114385"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Phase Equilibria","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037838122500055X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this work the Cubic two State (CTS) equation of state (EoS) has been utilized to model the pure and mixed ionic liquids (ILs) viscosity. The free volume theory (FVT) and Eyring theory have been coupled with the CTS EoS to estimate the pure and mixture IL viscosity. The average relative deviation (ARD%) of pure imidazolium-based ILs viscosity has been obtained 0.42 %. The results show that the CTS+FVT can estimate the pure viscosity of ILs up to high pressure accurately. The mixture viscosity has been calculated using the CTS coupled with the Eyring theory and Redlich-Kister mixing rule. In this regard, four adjustable parameters of the thermal contribution of excess activation free energy in the Redlich-Kister mixing rule have been adjusted using the experimental viscosity data. The average ARD% value of mixture viscosity has been obtained 3.6 %. The effect of ideal, thermal, and mechanical contributions of excess Gibbs free energy of the Eyring theory on mixture viscosity has been studied. The results show that the thermal and mechanical terms have a minor effect on mixture viscosity. The CTS model results have been compared to the SAFT-VR Morse EoS. The result shows that a simple and robust model like CTS can be utilized as an alternative model for complex SAFT-based models to estimate the pure and mixture viscosity of IL-containing systems.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用三次二态方程和Eyring理论估计离子液体的混合粘度
本文利用三次二态方程(CTS)来模拟纯离子液体和混合离子液体的粘度。将自由体积理论(FVT)和Eyring理论与CTS - EoS相结合,估计了纯油和混合油的粘度。得到纯咪唑基液体粘度的平均相对偏差(ARD%)为0.42%。结果表明,CTS+FVT能较准确地估计出高压以下液体的纯粘度。利用CTS结合Eyring理论和Redlich-Kister混合规则计算了混合物的粘度。为此,利用实验黏度数据对Redlich-Kister混合规则中多余活化自由能热贡献的四个可调参数进行了调整。得到混合料粘度的平均ARD%值为3.6%。研究了埃宁理论中过量吉布斯自由能的理想贡献、热贡献和力学贡献对混合物粘度的影响。结果表明,热、力学条件对混合物粘度的影响较小。CTS模型结果与SAFT-VR Morse EoS进行了比较。结果表明,CTS这样简单且鲁棒的模型可以作为复杂的基于saft的模型的替代模型来估计含il体系的纯粘度和混合粘度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Fluid Phase Equilibria
Fluid Phase Equilibria 工程技术-工程:化工
CiteScore
5.30
自引率
15.40%
发文量
223
审稿时长
53 days
期刊介绍: Fluid Phase Equilibria publishes high-quality papers dealing with experimental, theoretical, and applied research related to equilibrium and transport properties of fluids, solids, and interfaces. Subjects of interest include physical/phase and chemical equilibria; equilibrium and nonequilibrium thermophysical properties; fundamental thermodynamic relations; and stability. The systems central to the journal include pure substances and mixtures of organic and inorganic materials, including polymers, biochemicals, and surfactants with sufficient characterization of composition and purity for the results to be reproduced. Alloys are of interest only when thermodynamic studies are included, purely material studies will not be considered. In all cases, authors are expected to provide physical or chemical interpretations of the results. Experimental research can include measurements under all conditions of temperature, pressure, and composition, including critical and supercritical. Measurements are to be associated with systems and conditions of fundamental or applied interest, and may not be only a collection of routine data, such as physical property or solubility measurements at limited pressures and temperatures close to ambient, or surfactant studies focussed strictly on micellisation or micelle structure. Papers reporting common data must be accompanied by new physical insights and/or contemporary or new theory or techniques.
期刊最新文献
Vapor-liquid equilibrium for the separation of the n-hexane + ethanol azeotropic mixture with biobased entrainers guaiacol and dimethyl isosorbide A geometric–statistical perspective on entropy and enthalpy–entropy compensation in coarse-grained free-energy landscapes Phase behavior of a water– hydrocarbon condensate mixture: phase diagram construction using CPA and PC-SAFT EoS, experimental design, and model validation Revealing the dissolution mechanism of indomethacin (Form γ) in several neat and binary solvents based on experiments and molecular simulations Thermodynamic modeling of formic acid with SAFT-VR Mie DBD for energy applications: Heat pumps, Rankine cycles, and CO₂ electrochemical reduction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1