Yandong Hou , Yiliang Dong , Chuntian Gao , Bowen Chen , Chao Zhang , Weichao Li , Yan Xiang
{"title":"Performance analysis of U-50Zr helical cruciform fuel during loss-of-coolant accidents Based on MOOSE framework","authors":"Yandong Hou , Yiliang Dong , Chuntian Gao , Bowen Chen , Chao Zhang , Weichao Li , Yan Xiang","doi":"10.1016/j.anucene.2025.111254","DOIUrl":null,"url":null,"abstract":"<div><div>Helical Cruciform Fuel (HCF) embodies advancement in the fusion of unique geometric design with state-of-the-art metallic alloy materials. This innovative design leverages the optimized heat transfer characteristics of its distinctive geometry to potentially achieve elevated power output levels. Additionally, the employment of U-50Zr fuel contributes significantly to reducing the risk of potential accidents. The operation of nuclear fuel is a typical multi physics process, and accurate evaluation and prediction require advanced research methods. The open-source, parallel finite element framework MOOSE, a renowned software platform, is integral to the effective modeling and simulation of these intricate processes. Based on the MOOSE framework, simulate the operational behavior of HCF under high burnup conditions in pressurized water reactor environment and challenging scenarios of loss of coolant accident (LOCA). The calculation results indicate that U-10Zr experiences excessive swelling during the initial burnup period, and stress will concentrate at the concave arc position of the cladding. The swelling of U-50Zr gradually increases with stress, rendering it a more suitable alternative fuel for HCF. During LOCA accidents, the mechanical behavior of the fuel assembly, particularly the cladding, undergoes a sharp decrease in stress after an increase.</div><div>Notably, the minimum axial stress post-cladding stress drop occurs near the central height. Furthermore, the two axial helices of the concave and convex arcs of the cladding exhibit opposing characteristics during such accidents. A comparative analysis between LB-LOCA and SB-LOCA reveals a significant lag in the reduction of cladding stress in the case of SB-LOCA.</div></div>","PeriodicalId":8006,"journal":{"name":"Annals of Nuclear Energy","volume":"215 ","pages":"Article 111254"},"PeriodicalIF":1.9000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Nuclear Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306454925000714","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Helical Cruciform Fuel (HCF) embodies advancement in the fusion of unique geometric design with state-of-the-art metallic alloy materials. This innovative design leverages the optimized heat transfer characteristics of its distinctive geometry to potentially achieve elevated power output levels. Additionally, the employment of U-50Zr fuel contributes significantly to reducing the risk of potential accidents. The operation of nuclear fuel is a typical multi physics process, and accurate evaluation and prediction require advanced research methods. The open-source, parallel finite element framework MOOSE, a renowned software platform, is integral to the effective modeling and simulation of these intricate processes. Based on the MOOSE framework, simulate the operational behavior of HCF under high burnup conditions in pressurized water reactor environment and challenging scenarios of loss of coolant accident (LOCA). The calculation results indicate that U-10Zr experiences excessive swelling during the initial burnup period, and stress will concentrate at the concave arc position of the cladding. The swelling of U-50Zr gradually increases with stress, rendering it a more suitable alternative fuel for HCF. During LOCA accidents, the mechanical behavior of the fuel assembly, particularly the cladding, undergoes a sharp decrease in stress after an increase.
Notably, the minimum axial stress post-cladding stress drop occurs near the central height. Furthermore, the two axial helices of the concave and convex arcs of the cladding exhibit opposing characteristics during such accidents. A comparative analysis between LB-LOCA and SB-LOCA reveals a significant lag in the reduction of cladding stress in the case of SB-LOCA.
期刊介绍:
Annals of Nuclear Energy provides an international medium for the communication of original research, ideas and developments in all areas of the field of nuclear energy science and technology. Its scope embraces nuclear fuel reserves, fuel cycles and cost, materials, processing, system and component technology (fission only), design and optimization, direct conversion of nuclear energy sources, environmental control, reactor physics, heat transfer and fluid dynamics, structural analysis, fuel management, future developments, nuclear fuel and safety, nuclear aerosol, neutron physics, computer technology (both software and hardware), risk assessment, radioactive waste disposal and reactor thermal hydraulics. Papers submitted to Annals need to demonstrate a clear link to nuclear power generation/nuclear engineering. Papers which deal with pure nuclear physics, pure health physics, imaging, or attenuation and shielding properties of concretes and various geological materials are not within the scope of the journal. Also, papers that deal with policy or economics are not within the scope of the journal.