Soil moisture dominates gross primary productivity variation during severe droughts in Central Asia

IF 5.8 2区 环境科学与生态学 Q1 ECOLOGY Ecological Informatics Pub Date : 2025-02-14 DOI:10.1016/j.ecoinf.2025.103076
Tao Yu , Guli Jiapaer , Anming Bao , Ye Yuan , Jiayu Bao , Tim Van de Voorde
{"title":"Soil moisture dominates gross primary productivity variation during severe droughts in Central Asia","authors":"Tao Yu ,&nbsp;Guli Jiapaer ,&nbsp;Anming Bao ,&nbsp;Ye Yuan ,&nbsp;Jiayu Bao ,&nbsp;Tim Van de Voorde","doi":"10.1016/j.ecoinf.2025.103076","DOIUrl":null,"url":null,"abstract":"<div><div>The onset of severe drought is usually accompanied by anomalies in soil moisture (SM) and climatic factors such as temperature (Tem), solar radiation (Srad), and vapor pressure defict (VPD). These factors are critical for gross primary productivity (GPP) as they directly influence photosynthesis. Central Asia (CA), characterized by a dry climate and water scarcity, frequently experiences severe droughts, leading to a decrease in GPP. However, how anomalies in SM and climatic factors affect GPP in CA, and the dominant factors causing the decline in GPP during severe droughts, remain unclear. Here we first identified severe droughts in CA from 2000 to 2021 using the self-calibrated Palmer Drought Severity Index (scPDSI) and then investigated the effects of anomalies in SM, Tem, Srad, and VPD on solar-induced chlorophyll fluorescence (SIF) and GPP under severe drought conditions by light-use efficiency P-model and the Random Forest (RF) algorithm. The results show that the severe droughts in CA from 2000 to 2021 occurred in 2008 and 2021, with scPDSI values of −3.26 and − 3.94, respectively. In 2008 and 2021, SIF and GPP showed significant decreases: the area of negative anomalies in SIF and GPP was more than 70 % of CA. The spatial pattern of SM anomalies is consistent with that of SIF and GPP. P-model simulations indicate that SM deficits dominated the decline in GPP in 2008 and 2021, affecting regions covering 31 % and 17 % of CA, respectively, with GPP reductions exceeding 5 %. RF predictions also indicated that during severe drought, SM had a significant effect on GPP, while Srad, Tem, and VPD had a slight effect on GPP.</div></div>","PeriodicalId":51024,"journal":{"name":"Ecological Informatics","volume":"86 ","pages":"Article 103076"},"PeriodicalIF":5.8000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Informatics","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574954125000858","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The onset of severe drought is usually accompanied by anomalies in soil moisture (SM) and climatic factors such as temperature (Tem), solar radiation (Srad), and vapor pressure defict (VPD). These factors are critical for gross primary productivity (GPP) as they directly influence photosynthesis. Central Asia (CA), characterized by a dry climate and water scarcity, frequently experiences severe droughts, leading to a decrease in GPP. However, how anomalies in SM and climatic factors affect GPP in CA, and the dominant factors causing the decline in GPP during severe droughts, remain unclear. Here we first identified severe droughts in CA from 2000 to 2021 using the self-calibrated Palmer Drought Severity Index (scPDSI) and then investigated the effects of anomalies in SM, Tem, Srad, and VPD on solar-induced chlorophyll fluorescence (SIF) and GPP under severe drought conditions by light-use efficiency P-model and the Random Forest (RF) algorithm. The results show that the severe droughts in CA from 2000 to 2021 occurred in 2008 and 2021, with scPDSI values of −3.26 and − 3.94, respectively. In 2008 and 2021, SIF and GPP showed significant decreases: the area of negative anomalies in SIF and GPP was more than 70 % of CA. The spatial pattern of SM anomalies is consistent with that of SIF and GPP. P-model simulations indicate that SM deficits dominated the decline in GPP in 2008 and 2021, affecting regions covering 31 % and 17 % of CA, respectively, with GPP reductions exceeding 5 %. RF predictions also indicated that during severe drought, SM had a significant effect on GPP, while Srad, Tem, and VPD had a slight effect on GPP.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
土壤水分主导中亚严重干旱期间总初级生产力的变化
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ecological Informatics
Ecological Informatics 环境科学-生态学
CiteScore
8.30
自引率
11.80%
发文量
346
审稿时长
46 days
期刊介绍: The journal Ecological Informatics is devoted to the publication of high quality, peer-reviewed articles on all aspects of computational ecology, data science and biogeography. The scope of the journal takes into account the data-intensive nature of ecology, the growing capacity of information technology to access, harness and leverage complex data as well as the critical need for informing sustainable management in view of global environmental and climate change. The nature of the journal is interdisciplinary at the crossover between ecology and informatics. It focuses on novel concepts and techniques for image- and genome-based monitoring and interpretation, sensor- and multimedia-based data acquisition, internet-based data archiving and sharing, data assimilation, modelling and prediction of ecological data.
期刊最新文献
Soil moisture dominates gross primary productivity variation during severe droughts in Central Asia Mapping spatiotemporal mortality patterns in spruce mountain forests using Sentinel-2 data and environmental factors Advancing Sika deer detection and distance estimation through comprehensive camera calibration and distortion analysis DAMI-YOLOv8l: A multi-scale detection framework for light-trapping insect pest monitoring Deep sea spy: An online citizen science annotation platform for science and ocean literacy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1