Clinton Gibson, Joseph B. Schulz, Amy Yu, Piotr Dubrowski, Lawrie Skinner
{"title":"Nontoxic generalized patient shielding devices for total skin electron therapy","authors":"Clinton Gibson, Joseph B. Schulz, Amy Yu, Piotr Dubrowski, Lawrie Skinner","doi":"10.1016/j.phro.2025.100697","DOIUrl":null,"url":null,"abstract":"<div><div>This study evaluates alternative shielding materials to lead for protecting the scalp and nails during total skin electron irradiation. We tested a silicone helmet, tungsten-doped silicone mittens, and planar aluminum and copper shields. The helmet and mittens were created using 3D modeling software and fused filament fabrication printing, while the planar shields were machined and assembled with printed hardware. Transmission measurements showed transmission rates of 4.5%–6.8% for the mittens, 5.8%–9.1% for the helmet, and 7.5% for the planar shields. The silicone-based devices improve comfort and usability, and slight design changes can enhance coverage and application.</div></div>","PeriodicalId":36850,"journal":{"name":"Physics and Imaging in Radiation Oncology","volume":"33 ","pages":"Article 100697"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Imaging in Radiation Oncology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405631625000028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study evaluates alternative shielding materials to lead for protecting the scalp and nails during total skin electron irradiation. We tested a silicone helmet, tungsten-doped silicone mittens, and planar aluminum and copper shields. The helmet and mittens were created using 3D modeling software and fused filament fabrication printing, while the planar shields were machined and assembled with printed hardware. Transmission measurements showed transmission rates of 4.5%–6.8% for the mittens, 5.8%–9.1% for the helmet, and 7.5% for the planar shields. The silicone-based devices improve comfort and usability, and slight design changes can enhance coverage and application.