A phenol-interference decoupling method for hydroxyl-sanshools detection based on a modified electrode with magnesium-aluminum layered double hydroxide
Lingqin Shen , Jiashen Li , Xiaobo Zou , Francesca Giampieri , Maurizio Battino , Di Zhang
{"title":"A phenol-interference decoupling method for hydroxyl-sanshools detection based on a modified electrode with magnesium-aluminum layered double hydroxide","authors":"Lingqin Shen , Jiashen Li , Xiaobo Zou , Francesca Giampieri , Maurizio Battino , Di Zhang","doi":"10.1016/j.jfca.2025.107365","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, a glassy carbon electrode modified with magnesium-aluminum layered double hydroxide (MgAl-LDH) was proposed to enhance the precision of hydroxy-sanshools quantification by mitigating polyphenol interference commonly found in the <em>Zanthoxylum bungeanum</em> pericarp during voltammetric assays. It was demonstrated that the MgAl-LDH-modified glassy carbon electrode effectively avoided the impact of polyphenols on hydroxy-sanshools by recovering their differential pulse voltammetric responses. Furthermore, the optimized method successfully quantified total hydroxy-sanshools in the linear range of 0.20–100.21 mg/g with good sensitivity (limit of detection and limit of quantification were 0.055 mg/L and 0.18 mg/L, respectively), and with recovery ranged from 95.66 % to 108.20 %. The intra-day and interday relative standard deviations were in the range of 0.43–3.13 % and 1.48–4.56 %, respectively. Additionally, the practicality of the developed approach was validated by quantifying hydroxy-sanshools in commercial <em>Zanthoxylum bungeanum</em> pericarp-related products, with results closely matching those obtained by high-performance liquid chromatography. These data reveals that the developed MgAl-LDH offers a novel strategy for modifying electrodes with high selectivity for the rapid monitoring of pungent substances in <em>Zanthoxylum bungeanum</em> pericarp.</div></div>","PeriodicalId":15867,"journal":{"name":"Journal of Food Composition and Analysis","volume":"141 ","pages":"Article 107365"},"PeriodicalIF":4.0000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Composition and Analysis","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0889157525001796","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, a glassy carbon electrode modified with magnesium-aluminum layered double hydroxide (MgAl-LDH) was proposed to enhance the precision of hydroxy-sanshools quantification by mitigating polyphenol interference commonly found in the Zanthoxylum bungeanum pericarp during voltammetric assays. It was demonstrated that the MgAl-LDH-modified glassy carbon electrode effectively avoided the impact of polyphenols on hydroxy-sanshools by recovering their differential pulse voltammetric responses. Furthermore, the optimized method successfully quantified total hydroxy-sanshools in the linear range of 0.20–100.21 mg/g with good sensitivity (limit of detection and limit of quantification were 0.055 mg/L and 0.18 mg/L, respectively), and with recovery ranged from 95.66 % to 108.20 %. The intra-day and interday relative standard deviations were in the range of 0.43–3.13 % and 1.48–4.56 %, respectively. Additionally, the practicality of the developed approach was validated by quantifying hydroxy-sanshools in commercial Zanthoxylum bungeanum pericarp-related products, with results closely matching those obtained by high-performance liquid chromatography. These data reveals that the developed MgAl-LDH offers a novel strategy for modifying electrodes with high selectivity for the rapid monitoring of pungent substances in Zanthoxylum bungeanum pericarp.
期刊介绍:
The Journal of Food Composition and Analysis publishes manuscripts on scientific aspects of data on the chemical composition of human foods, with particular emphasis on actual data on composition of foods; analytical methods; studies on the manipulation, storage, distribution and use of food composition data; and studies on the statistics, use and distribution of such data and data systems. The Journal''s basis is nutrient composition, with increasing emphasis on bioactive non-nutrient and anti-nutrient components. Papers must provide sufficient description of the food samples, analytical methods, quality control procedures and statistical treatments of the data to permit the end users of the food composition data to evaluate the appropriateness of such data in their projects.
The Journal does not publish papers on: microbiological compounds; sensory quality; aromatics/volatiles in food and wine; essential oils; organoleptic characteristics of food; physical properties; or clinical papers and pharmacology-related papers.