{"title":"Bi-level Integrated Electricity and Natural Gas System retrofit planning model considering Carbon Capture, Utilization and Storage","authors":"Ang Xuan, Xinwei Shen, Yangfan Luo","doi":"10.1016/j.apenergy.2025.125476","DOIUrl":null,"url":null,"abstract":"<div><div>Integrated Electricity and Natural Gas System (IEGS) considers the interactions between electricity and natural gas systems with broad prospects in carbon emission mitigation to achieve the global low-carbon transition, which is an approachable pathway to tap the potential of different energy systems. Concurrently, advancements in technologies such as Carbon Capture, Utilization and Storage (CCUS), Gas-fired Power Generation (GPG), and Power to Gas (PtG) enable the integration of these two large systems, allowing for bi-directional energy flows. This paper proposes an original IEGS retrofit planning model, in which the traditional power plant/gas source (PP/GS) is retrofitted into the carbon capture power plant/carbon capture gas source (CCPP/CCGS) with CCUS and PtG/GPG, as well as the gas pipelines and electricity transmission lines, are considered. Additionally, the IEGS retrofit model employs a bi-level planning strategy to distinguish conflicts of interest between investors and investees. Furthermore, the reformulation and decomposition (R&D) algorithm is developed to tackle the complexities of the bi-level mixed-integer programming problem. Numerical results demonstrate the effectiveness and superiority of the proposed model, showcasing its potential for practical application. Finally, the study analyzes the efficient boundaries associated with carbon price/tax and carbon capture/storage cost, providing valuable insights for policymakers and stakeholders.</div></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":"385 ","pages":"Article 125476"},"PeriodicalIF":10.1000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306261925002065","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Integrated Electricity and Natural Gas System (IEGS) considers the interactions between electricity and natural gas systems with broad prospects in carbon emission mitigation to achieve the global low-carbon transition, which is an approachable pathway to tap the potential of different energy systems. Concurrently, advancements in technologies such as Carbon Capture, Utilization and Storage (CCUS), Gas-fired Power Generation (GPG), and Power to Gas (PtG) enable the integration of these two large systems, allowing for bi-directional energy flows. This paper proposes an original IEGS retrofit planning model, in which the traditional power plant/gas source (PP/GS) is retrofitted into the carbon capture power plant/carbon capture gas source (CCPP/CCGS) with CCUS and PtG/GPG, as well as the gas pipelines and electricity transmission lines, are considered. Additionally, the IEGS retrofit model employs a bi-level planning strategy to distinguish conflicts of interest between investors and investees. Furthermore, the reformulation and decomposition (R&D) algorithm is developed to tackle the complexities of the bi-level mixed-integer programming problem. Numerical results demonstrate the effectiveness and superiority of the proposed model, showcasing its potential for practical application. Finally, the study analyzes the efficient boundaries associated with carbon price/tax and carbon capture/storage cost, providing valuable insights for policymakers and stakeholders.
期刊介绍:
Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.