{"title":"Large eddy simulations of free-falling perforated disks with small inertias","authors":"Wenhui Zhang, Yingjie Wei","doi":"10.1016/j.ijmultiphaseflow.2025.105154","DOIUrl":null,"url":null,"abstract":"<div><div>The dynamics of free-falling perforated disks of porosity <span><math><mrow><mi>χ</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>2</mn></mrow></math></span> are numerically investigated by the large eddy simulation (LES) within the range <span><math><mrow><mn>100</mn><mo>≤</mo><mi>A</mi><mi>r</mi><mo>≤</mo><mn>1000</mn></mrow></math></span> and <span><math><mrow><mn>7</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>4</mn></mrow></msup><mo>≤</mo><msup><mrow><mi>I</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>≤</mo><mn>2</mn><mo>.</mo><mn>7</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></math></span>. Three falling styles are identified, namely spiral motion, spiral irregular motion and Hula-Hoop motion. A linear relationship of the Archimedes number <span><math><mrow><mi>A</mi><mi>r</mi></mrow></math></span> and the Reynolds number <span><math><mrow><mi>R</mi><mi>e</mi></mrow></math></span> is observed within the intermediate Reynolds number regime. The mean values of crucial kinematic and dynamic variables are also given, and some scaling laws related to the perforated disk thickness <span><math><mi>h</mi></math></span> and diameter <span><math><mi>D</mi></math></span> are determined. For the mean descent velocity <span><math><mfenced><mrow><msub><mrow><mi>U</mi></mrow><mrow><mi>z</mi></mrow></msub></mrow></mfenced></math></span>, the gravitational velocity <span><math><msub><mrow><mi>U</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span> is a suitable characteristic velocity scale; this is not the case for the terminal velocity <span><math><msub><mrow><mi>U</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>, which is proportional to <span><math><mrow><msup><mrow><mi>h</mi></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>5</mn></mrow></mfrac></mrow></msup><msup><mrow><mi>D</mi></mrow><mrow><mfrac><mrow><mn>3</mn></mrow><mrow><mn>10</mn></mrow></mfrac></mrow></msup></mrow></math></span>. The characteristic timescale <span><math><msub><mrow><mi>t</mi></mrow><mrow><mi>v</mi></mrow></msub></math></span> for vortex shedding is proportional to <span><math><mrow><msup><mrow><mi>D</mi></mrow><mrow><mfrac><mrow><mn>4</mn></mrow><mrow><mn>5</mn></mrow></mfrac></mrow></msup><mo>/</mo><msup><mrow><mi>h</mi></mrow><mrow><mfrac><mrow><mn>3</mn></mrow><mrow><mn>10</mn></mrow></mfrac></mrow></msup></mrow></math></span>, which indicates thin perforated disks facilitate vortex shedding. The mean normal force <span><math><mfenced><mrow><msub><mrow><mi>F</mi></mrow><mrow><mi>N</mi></mrow></msub></mrow></mfenced></math></span> is proportional to <span><math><mrow><msup><mrow><mi>h</mi></mrow><mrow><mfrac><mrow><mn>8</mn></mrow><mrow><mn>5</mn></mrow></mfrac></mrow></msup><msup><mrow><mi>D</mi></mrow><mrow><mfrac><mrow><mn>7</mn></mrow><mrow><mn>5</mn></mrow></mfrac></mrow></msup></mrow></math></span>, and irrespective of falling styles. It indicates different falling styles are related to the velocity fluctuations <span><math><mrow><mi>U</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>−</mo><mfenced><mrow><msub><mrow><mi>U</mi></mrow><mrow><mi>z</mi></mrow></msub></mrow></mfenced><msub><mrow><mi>e</mi></mrow><mrow><mi>z</mi></mrow></msub></mrow></math></span>. Vortex structures of three falling styles are provided. For spiral motion and spiral irregular motion, a vertical vortex appears inside the large-scale helical vortex. For Hula-Hoop motion, small-scale vortexes are omnipresent, and a new independent vortex is identified. The results of this paper is limited, and much work remains to be done, including the effects of the solid-to-fluid density ratio <span><math><mi>ρ</mi></math></span> and holes topology.</div></div>","PeriodicalId":339,"journal":{"name":"International Journal of Multiphase Flow","volume":"186 ","pages":"Article 105154"},"PeriodicalIF":3.6000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Multiphase Flow","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301932225000321","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
The dynamics of free-falling perforated disks of porosity are numerically investigated by the large eddy simulation (LES) within the range and . Three falling styles are identified, namely spiral motion, spiral irregular motion and Hula-Hoop motion. A linear relationship of the Archimedes number and the Reynolds number is observed within the intermediate Reynolds number regime. The mean values of crucial kinematic and dynamic variables are also given, and some scaling laws related to the perforated disk thickness and diameter are determined. For the mean descent velocity , the gravitational velocity is a suitable characteristic velocity scale; this is not the case for the terminal velocity , which is proportional to . The characteristic timescale for vortex shedding is proportional to , which indicates thin perforated disks facilitate vortex shedding. The mean normal force is proportional to , and irrespective of falling styles. It indicates different falling styles are related to the velocity fluctuations . Vortex structures of three falling styles are provided. For spiral motion and spiral irregular motion, a vertical vortex appears inside the large-scale helical vortex. For Hula-Hoop motion, small-scale vortexes are omnipresent, and a new independent vortex is identified. The results of this paper is limited, and much work remains to be done, including the effects of the solid-to-fluid density ratio and holes topology.
期刊介绍:
The International Journal of Multiphase Flow publishes analytical, numerical and experimental articles of lasting interest. The scope of the journal includes all aspects of mass, momentum and energy exchange phenomena among different phases such as occur in disperse flows, gas–liquid and liquid–liquid flows, flows in porous media, boiling, granular flows and others.
The journal publishes full papers, brief communications and conference announcements.