Properties of local orthonormal systems, Part II: Geometric characterization of Bernstein inequalities

IF 0.9 3区 数学 Q2 MATHEMATICS Journal of Approximation Theory Pub Date : 2025-02-11 DOI:10.1016/j.jat.2025.106149
Jacek Gulgowski , Anna Kamont , Markus Passenbrunner
{"title":"Properties of local orthonormal systems, Part II: Geometric characterization of Bernstein inequalities","authors":"Jacek Gulgowski ,&nbsp;Anna Kamont ,&nbsp;Markus Passenbrunner","doi":"10.1016/j.jat.2025.106149","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mrow><mo>(</mo><mi>Ω</mi><mo>,</mo><mi>ℱ</mi><mo>,</mo><mi>P</mi><mo>)</mo></mrow></math></span> be a probability space and let <span><math><msubsup><mrow><mrow><mo>(</mo><msub><mrow><mi>ℱ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>∞</mi></mrow></msubsup></math></span> be a binary filtration. i.e. exactly one atom of <span><math><msub><mrow><mi>ℱ</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></math></span> is divided into <em>two</em> atoms of <span><math><msub><mrow><mi>ℱ</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> without any restriction on their respective measures. Additionally, denote the collection of atoms corresponding to this filtration by <span><math><mi>A</mi></math></span>. Let <span><math><mrow><mi>S</mi><mo>⊂</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span> be a finite-dimensional linear subspace, having an additional stability property on atoms <span><math><mi>A</mi></math></span>. For these data, we consider two dictionaries: <ul><li><span>•</span><span><div><span><math><mrow><mi>C</mi><mo>=</mo><mrow><mo>{</mo><mi>f</mi><mi>⋅</mi><msub><mrow><mi>1</mi></mrow><mrow><mi>A</mi></mrow></msub><mo>:</mo><mi>f</mi><mo>∈</mo><mi>S</mi><mo>,</mo><mi>A</mi><mo>∈</mo><mi>A</mi><mo>}</mo></mrow></mrow></math></span>,</div></span></li><li><span>•</span><span><div><span><math><mi>Φ</mi></math></span> – a local orthonormal system generated by <span><math><mi>S</mi></math></span> and the filtration <span><math><msubsup><mrow><mrow><mo>(</mo><msub><mrow><mi>ℱ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>∞</mi></mrow></msubsup></math></span>.</div></span></li></ul></div><div>Let <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mrow><mo>(</mo><mi>S</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mover><mrow><mi>span</mi></mrow><mo>¯</mo></mover></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></msub><mi>C</mi><mo>=</mo><msub><mrow><mover><mrow><mi>span</mi></mrow><mo>¯</mo></mover></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></msub><mi>Φ</mi></mrow></math></span>, with <span><math><mrow><mn>1</mn><mo>&lt;</mo><mi>p</mi><mo>&lt;</mo><mi>∞</mi></mrow></math></span>. We are interested in approximation spaces <span><math><mrow><msubsup><mrow><mi>A</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>α</mi></mrow></msubsup><mrow><mo>(</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mrow><mo>(</mo><mi>S</mi><mo>)</mo></mrow><mo>,</mo><mi>C</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msubsup><mrow><mi>A</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>α</mi></mrow></msubsup><mrow><mo>(</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mrow><mo>(</mo><mi>S</mi><mo>)</mo></mrow><mo>,</mo><mi>Φ</mi><mo>)</mo></mrow></mrow></math></span>, corresponding to the best <span><math><mi>n</mi></math></span>-term approximation in <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mrow><mo>(</mo><mi>S</mi><mo>)</mo></mrow></mrow></math></span> by elements of <span><math><mi>C</mi></math></span> and <span><math><mi>Φ</mi></math></span>, respectively, where <span><math><mrow><mi>α</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> and <span><math><mrow><mn>0</mn><mo>&lt;</mo><mi>q</mi><mo>≤</mo><mi>∞</mi></mrow></math></span>. It is known that in the classical Haar case, i.e. when <span><math><mrow><mi>S</mi><mo>=</mo><mi>span</mi><mrow><mo>(</mo><msub><mrow><mi>1</mi></mrow><mrow><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></mrow></msub><mo>)</mo></mrow></mrow></math></span> and the binary filtration <span><math><msubsup><mrow><mrow><mo>(</mo><msub><mrow><mi>ℱ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>∞</mi></mrow></msubsup></math></span> is dyadic (that is, an atom <span><math><mrow><mi>A</mi><mo>∈</mo><mi>A</mi></mrow></math></span> is divided into two new atoms of equal measure), we have <span><math><mrow><msubsup><mrow><mi>A</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>α</mi></mrow></msubsup><mrow><mo>(</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mrow><mo>(</mo><mi>S</mi><mo>)</mo></mrow><mo>,</mo><mi>Φ</mi><mo>)</mo></mrow><mo>=</mo><msubsup><mrow><mi>A</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>α</mi></mrow></msubsup><mrow><mo>(</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mrow><mo>(</mo><mi>S</mi><mo>)</mo></mrow><mo>,</mo><mi>C</mi><mo>)</mo></mrow></mrow></math></span>, cf. P. Petrushev (2003). This motivates us to ask the question whether this equality is true in the general setting described above. The answer to this question is governed by the validity of a specific Bernstein type inequality <span><math><mrow><mo>BI</mo><mrow><mo>(</mo><mi>A</mi><mo>,</mo><mi>S</mi><mo>,</mo><mi>p</mi><mo>,</mo><mi>τ</mi><mo>)</mo></mrow></mrow></math></span>, with parameters <span><math><mrow><mn>1</mn><mo>&lt;</mo><mi>p</mi><mo>&lt;</mo><mi>∞</mi></mrow></math></span>, <span><math><mrow><mn>0</mn><mo>&lt;</mo><mi>τ</mi><mo>&lt;</mo><mi>p</mi></mrow></math></span>.</div><div>The main result of this paper is a geometric characterization of this type of Bernstein inequality <span><math><mrow><mo>BI</mo><mrow><mo>(</mo><mi>A</mi><mo>,</mo><mi>S</mi><mo>,</mo><mi>p</mi><mo>,</mo><mi>τ</mi><mo>)</mo></mrow></mrow></math></span>, i.e. a characterization in terms of the behavior of functions from the space <span><math><mi>S</mi></math></span> on atoms <span><math><mi>A</mi></math></span> and rings <span><math><mrow><mi>ℛ</mi><mo>=</mo><mrow><mo>{</mo><mi>A</mi><mo>∖</mo><mi>B</mi><mo>:</mo><mi>A</mi><mo>,</mo><mi>B</mi><mo>∈</mo><mi>A</mi><mo>,</mo><mi>B</mi><mo>⊂</mo><mi>A</mi><mo>}</mo></mrow><mo>∖</mo><mi>A</mi></mrow></math></span>. We specialize this general result to some examples of interest, including general Haar systems and spaces <span><math><mi>S</mi></math></span> consisting of (multivariate) polynomials.</div></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"308 ","pages":"Article 106149"},"PeriodicalIF":0.9000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Approximation Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021904525000073","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let (Ω,,P) be a probability space and let (n)n=0 be a binary filtration. i.e. exactly one atom of n1 is divided into two atoms of n without any restriction on their respective measures. Additionally, denote the collection of atoms corresponding to this filtration by A. Let SL(Ω) be a finite-dimensional linear subspace, having an additional stability property on atoms A. For these data, we consider two dictionaries:
  • C={f1A:fS,AA},
  • Φ – a local orthonormal system generated by S and the filtration (n)n=0.
Let Lp(S)=span¯Lp(Ω)C=span¯Lp(Ω)Φ, with 1<p<. We are interested in approximation spaces Aqα(Lp(S),C) and Aqα(Lp(S),Φ), corresponding to the best n-term approximation in Lp(S) by elements of C and Φ, respectively, where α>0 and 0<q. It is known that in the classical Haar case, i.e. when S=span(1[0,1]) and the binary filtration (n)n=0 is dyadic (that is, an atom AA is divided into two new atoms of equal measure), we have Aqα(Lp(S),Φ)=Aqα(Lp(S),C), cf. P. Petrushev (2003). This motivates us to ask the question whether this equality is true in the general setting described above. The answer to this question is governed by the validity of a specific Bernstein type inequality BI(A,S,p,τ), with parameters 1<p<, 0<τ<p.
The main result of this paper is a geometric characterization of this type of Bernstein inequality BI(A,S,p,τ), i.e. a characterization in terms of the behavior of functions from the space S on atoms A and rings ={AB:A,BA,BA}A. We specialize this general result to some examples of interest, including general Haar systems and spaces S consisting of (multivariate) polynomials.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.90
自引率
11.10%
发文量
55
审稿时长
6-12 weeks
期刊介绍: The Journal of Approximation Theory is devoted to advances in pure and applied approximation theory and related areas. These areas include, among others: • Classical approximation • Abstract approximation • Constructive approximation • Degree of approximation • Fourier expansions • Interpolation of operators • General orthogonal systems • Interpolation and quadratures • Multivariate approximation • Orthogonal polynomials • Padé approximation • Rational approximation • Spline functions of one and several variables • Approximation by radial basis functions in Euclidean spaces, on spheres, and on more general manifolds • Special functions with strong connections to classical harmonic analysis, orthogonal polynomial, and approximation theory (as opposed to combinatorics, number theory, representation theory, generating functions, formal theory, and so forth) • Approximation theoretic aspects of real or complex function theory, function theory, difference or differential equations, function spaces, or harmonic analysis • Wavelet Theory and its applications in signal and image processing, and in differential equations with special emphasis on connections between wavelet theory and elements of approximation theory (such as approximation orders, Besov and Sobolev spaces, and so forth) • Gabor (Weyl-Heisenberg) expansions and sampling theory.
期刊最新文献
A note on diffusion limits for stochastic gradient descent Editorial Board Relative asymptotics of multiple orthogonal polynomials for Nikishin systems of two measures Estimates for entropy numbers of sets of smooth functions on complex spheres The Pearcey integral in the highly oscillatory region II
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1