Development and validation of a human-machine interface for unmanned aerial vehicle (UAV) control via hand gesture teleoperation

IF 7.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Expert Systems with Applications Pub Date : 2025-02-15 DOI:10.1016/j.eswa.2025.126828
Fevzi Çakmak Bolat , Mustafa Cem Avci
{"title":"Development and validation of a human-machine interface for unmanned aerial vehicle (UAV) control via hand gesture teleoperation","authors":"Fevzi Çakmak Bolat ,&nbsp;Mustafa Cem Avci","doi":"10.1016/j.eswa.2025.126828","DOIUrl":null,"url":null,"abstract":"<div><div>In this research, a drone-style unmanned aerial vehicle is maneuvered using hand gestures through the creation of a specialized glove design. The analytical formulas pertaining to the drone framework developed during the research were derived, leading to the establishment of a mathematical representation. These formulas were implemented in the Matlab &amp; Simulink environment, and simulations of the system based on this mathematical representation were conducted. Next, to carry out verification tests, a unique device was crafted and set up for the drone, enabling real-time data exchange with the glove. A series of distinct signal sets for the glove were examined to confirm the functionality of the system. After confirming the control mechanism, it was seamlessly incorporated into the electronic hardware framework, leveraging the Arduino Uno microcontroller as the focal point. Within the hand gesture apparatus, an innovative circuit was devised, managed by the Atmega328P microcontroller chip. The primary motivation behind this exploration resides in the desire to establish a user interface for UAV operators that is both seamless and unobtrusive, moving beyond the artificial and cumbersome elements tied to traditional control systems. For this purpose, the research aims to empower users to utilize hand gestures—frequently employed in various everyday scenarios—for piloting activities, thus improving user performance and simplicity of use. The findings of this study highlight the parity between the glove apparatus designed for hand gesture manipulation and the conventional joystick-based system, thereby confirming its effectiveness for multiple applications. Furthermore, a one-handed method was embraced for hand gesture control, with the supplementary aim of offering pilot training opportunities for individuals with upper limb impairments.</div></div>","PeriodicalId":50461,"journal":{"name":"Expert Systems with Applications","volume":"273 ","pages":"Article 126828"},"PeriodicalIF":7.5000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems with Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957417425004506","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In this research, a drone-style unmanned aerial vehicle is maneuvered using hand gestures through the creation of a specialized glove design. The analytical formulas pertaining to the drone framework developed during the research were derived, leading to the establishment of a mathematical representation. These formulas were implemented in the Matlab & Simulink environment, and simulations of the system based on this mathematical representation were conducted. Next, to carry out verification tests, a unique device was crafted and set up for the drone, enabling real-time data exchange with the glove. A series of distinct signal sets for the glove were examined to confirm the functionality of the system. After confirming the control mechanism, it was seamlessly incorporated into the electronic hardware framework, leveraging the Arduino Uno microcontroller as the focal point. Within the hand gesture apparatus, an innovative circuit was devised, managed by the Atmega328P microcontroller chip. The primary motivation behind this exploration resides in the desire to establish a user interface for UAV operators that is both seamless and unobtrusive, moving beyond the artificial and cumbersome elements tied to traditional control systems. For this purpose, the research aims to empower users to utilize hand gestures—frequently employed in various everyday scenarios—for piloting activities, thus improving user performance and simplicity of use. The findings of this study highlight the parity between the glove apparatus designed for hand gesture manipulation and the conventional joystick-based system, thereby confirming its effectiveness for multiple applications. Furthermore, a one-handed method was embraced for hand gesture control, with the supplementary aim of offering pilot training opportunities for individuals with upper limb impairments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Expert Systems with Applications
Expert Systems with Applications 工程技术-工程:电子与电气
CiteScore
13.80
自引率
10.60%
发文量
2045
审稿时长
8.7 months
期刊介绍: Expert Systems With Applications is an international journal dedicated to the exchange of information on expert and intelligent systems used globally in industry, government, and universities. The journal emphasizes original papers covering the design, development, testing, implementation, and management of these systems, offering practical guidelines. It spans various sectors such as finance, engineering, marketing, law, project management, information management, medicine, and more. The journal also welcomes papers on multi-agent systems, knowledge management, neural networks, knowledge discovery, data mining, and other related areas, excluding applications to military/defense systems.
期刊最新文献
Advanced deep learning model for crop-specific and cross-crop pest identification MSIFT: A novel end-to-end mechanical fault diagnosis framework under limited & imbalanced data using multi-source information fusion Exploring multi-scale and cross-type features in 3D point cloud learning with CCMNET Research on improving the robustness of spatially embedded interdependent networks by adding local additional dependency links Referring flexible image restoration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1