Hierarchical interconnected porous scaffolds with regulated interfacial nanotopography exhibit antimicrobial, alleviate inflammation, neovascularization, and tissue integration for bone regeneration

IF 12.8 1区 医学 Q1 ENGINEERING, BIOMEDICAL Biomaterials Pub Date : 2025-02-13 DOI:10.1016/j.biomaterials.2025.123186
Shirun Chu , Linlong Li , Jiahao Zhang , Jing You , Xiaolan Li , Yuanyuan Zhou , Xiao Huang , Qiaoli Wu , Fang Chen , Xue Bai , Huan Tan , Jie Weng
{"title":"Hierarchical interconnected porous scaffolds with regulated interfacial nanotopography exhibit antimicrobial, alleviate inflammation, neovascularization, and tissue integration for bone regeneration","authors":"Shirun Chu ,&nbsp;Linlong Li ,&nbsp;Jiahao Zhang ,&nbsp;Jing You ,&nbsp;Xiaolan Li ,&nbsp;Yuanyuan Zhou ,&nbsp;Xiao Huang ,&nbsp;Qiaoli Wu ,&nbsp;Fang Chen ,&nbsp;Xue Bai ,&nbsp;Huan Tan ,&nbsp;Jie Weng","doi":"10.1016/j.biomaterials.2025.123186","DOIUrl":null,"url":null,"abstract":"<div><div>Novel interconnected porous scaffolds featuring suitable micro-interface structures hold significance in bone regeneration. Therefore, a hierarchical interconnected porous scaffold with nanotopography interface of pores, mimicking natural bone structure and extracellular matrix microenvironment, are designed to enhance bone regeneration by improving cell adhesion, proliferation, alleviate inflammation, and tissue integration capabilities. The scaffold is fabricated through Pickering emulsion templating method, with aminated gelatin and copper-hydroxyapatite nanoparticles serving as co-stabilizers. This process results in a dual nanoparticles-decorated interface, which could provide ample anchoring points for cells. Adjusting the ratio of the two nanoparticles leads to scaffold with different interfacial roughness. The resultant scaffold increases the number of cellular focal adhesions, enhancing cell adhesion, while its high porosity supports cell recruitment, proliferation and immunomodulation. Copper-hydroxyapatite adsorption at the pore interface reduces copper ion usage and exposes nanoparticles for direct cell contact, endowing the scaffold with enhanced antibacterial and angiogenic properties. An initial burst release phase of copper ions exerts inhibitory effects on mRNA expression, followed by a sustained and optimal release phase that promotes osteogenesis. The molecular mechanism underlying the scaffold of osteogenic potential has been elucidated through RNA sequencing analysis, along with the regulation of inflammatory cytokine expression. <em>In vitro</em> and <em>in vivo</em> studies alike verify its neovascularization-promoting capacity. The efficacy shown in a rat model with critical cranial defects underscores its clinical promise for bone regeneration, as Cu-doped scaffolds retain osteoinductive qualities after 10 weeks <em>in vivo</em>. This study innovates a manufacturing method for a novel scaffold in bone tissue engineering.</div></div>","PeriodicalId":254,"journal":{"name":"Biomaterials","volume":"318 ","pages":"Article 123186"},"PeriodicalIF":12.8000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S014296122500105X","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Novel interconnected porous scaffolds featuring suitable micro-interface structures hold significance in bone regeneration. Therefore, a hierarchical interconnected porous scaffold with nanotopography interface of pores, mimicking natural bone structure and extracellular matrix microenvironment, are designed to enhance bone regeneration by improving cell adhesion, proliferation, alleviate inflammation, and tissue integration capabilities. The scaffold is fabricated through Pickering emulsion templating method, with aminated gelatin and copper-hydroxyapatite nanoparticles serving as co-stabilizers. This process results in a dual nanoparticles-decorated interface, which could provide ample anchoring points for cells. Adjusting the ratio of the two nanoparticles leads to scaffold with different interfacial roughness. The resultant scaffold increases the number of cellular focal adhesions, enhancing cell adhesion, while its high porosity supports cell recruitment, proliferation and immunomodulation. Copper-hydroxyapatite adsorption at the pore interface reduces copper ion usage and exposes nanoparticles for direct cell contact, endowing the scaffold with enhanced antibacterial and angiogenic properties. An initial burst release phase of copper ions exerts inhibitory effects on mRNA expression, followed by a sustained and optimal release phase that promotes osteogenesis. The molecular mechanism underlying the scaffold of osteogenic potential has been elucidated through RNA sequencing analysis, along with the regulation of inflammatory cytokine expression. In vitro and in vivo studies alike verify its neovascularization-promoting capacity. The efficacy shown in a rat model with critical cranial defects underscores its clinical promise for bone regeneration, as Cu-doped scaffolds retain osteoinductive qualities after 10 weeks in vivo. This study innovates a manufacturing method for a novel scaffold in bone tissue engineering.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomaterials
Biomaterials 工程技术-材料科学:生物材料
CiteScore
26.00
自引率
2.90%
发文量
565
审稿时长
46 days
期刊介绍: Biomaterials is an international journal covering the science and clinical application of biomaterials. A biomaterial is now defined as a substance that has been engineered to take a form which, alone or as part of a complex system, is used to direct, by control of interactions with components of living systems, the course of any therapeutic or diagnostic procedure. It is the aim of the journal to provide a peer-reviewed forum for the publication of original papers and authoritative review and opinion papers dealing with the most important issues facing the use of biomaterials in clinical practice. The scope of the journal covers the wide range of physical, biological and chemical sciences that underpin the design of biomaterials and the clinical disciplines in which they are used. These sciences include polymer synthesis and characterization, drug and gene vector design, the biology of the host response, immunology and toxicology and self assembly at the nanoscale. Clinical applications include the therapies of medical technology and regenerative medicine in all clinical disciplines, and diagnostic systems that reply on innovative contrast and sensing agents. The journal is relevant to areas such as cancer diagnosis and therapy, implantable devices, drug delivery systems, gene vectors, bionanotechnology and tissue engineering.
期刊最新文献
BBPs-functionalized tetrahedral framework nucleic acid hydrogel scaffold captures endogenous BMP-2 to promote bone regeneration Cascade targeting selenium nanoparticles-loaded hydrogel microspheres for multifaceted antioxidant defense in osteoarthritis 3D-printed multifunctional bilayer scaffold with sustained release of apoptotic extracellular vesicles and antibacterial coacervates for enhanced wound healing Micropore structure engineering of injectable granular hydrogels via controlled liquid-liquid phase separation facilitates regenerative wound healing in mice and pigs Self-regulating immunosuppressive tumor microenvironment by NIR-II photothermal agent with anti-inflammatory activity for self-reinforcing immunotherapy synergy with cancer photothermal ablation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1