Pathogenesis and therapeutic effect of sitagliptin in experimental diabetic model of COVID-19

IF 4.2 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochimica et biophysica acta. Molecular basis of disease Pub Date : 2025-02-17 DOI:10.1016/j.bbadis.2025.167726
Qinghe Meng , Ikechukwu Jacob , Chunyan Wang , Julia Ma , Liye Suo , Wenlu Zhao , Akinkunmi Lawal , Yuqi Song , Guirong Wang , Robert N. Cooney
{"title":"Pathogenesis and therapeutic effect of sitagliptin in experimental diabetic model of COVID-19","authors":"Qinghe Meng ,&nbsp;Ikechukwu Jacob ,&nbsp;Chunyan Wang ,&nbsp;Julia Ma ,&nbsp;Liye Suo ,&nbsp;Wenlu Zhao ,&nbsp;Akinkunmi Lawal ,&nbsp;Yuqi Song ,&nbsp;Guirong Wang ,&nbsp;Robert N. Cooney","doi":"10.1016/j.bbadis.2025.167726","DOIUrl":null,"url":null,"abstract":"<div><div>This study evaluates the pathogenesis of COVID-19 and the therapeutic efficacy of sitagliptin in diabetic and obese mice. Using a novel double-transgenic mouse model (db/db and K18-hACE2), the findings demonstrates that SARS-CoV-2 infection (Delta variant) causes severe multi-organ damage, glucose metabolism abnormalities, insulin resistance, and pancreatic islet cell damage in diabetic mice. Infected diabetic mice displayed higher mortality, inflammation (elevated TNF-α, IL-6, IL-1β), and fibrinolytic activity (PAI-1), alongside dysregulated diabetes-related hormones (GLP-1, leptin, ghrelin, resistin) compared to non-diabetic controls. Sitagliptin treatment reduced organ injury, hyperglycemia, inflammation, and fibrinolytic activity while improving insulin resistance and glucose metabolism. This was evidenced by decreased fasting blood glucose levels, improved insulin sensitivity, and elevated insulin and GLP-1 levels. These findings suggest sitagliptin is a promising therapeutic strategy to mitigate the severity of COVID-19 in experimental diabetes by modulating inflammation and improving metabolic syndrome. Further mechanistic investigations revealed that the level of hACE2 expression, along with the activation of NF-κB and IRS-1, play critical roles in the development of SARS-CoV-2-induced diabetes, the exacerbation of pre-existing diabetes, and the therapeutic efficacy of sitagliptin.</div></div>","PeriodicalId":8821,"journal":{"name":"Biochimica et biophysica acta. Molecular basis of disease","volume":"1871 4","pages":"Article 167726"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular basis of disease","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925443925000717","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study evaluates the pathogenesis of COVID-19 and the therapeutic efficacy of sitagliptin in diabetic and obese mice. Using a novel double-transgenic mouse model (db/db and K18-hACE2), the findings demonstrates that SARS-CoV-2 infection (Delta variant) causes severe multi-organ damage, glucose metabolism abnormalities, insulin resistance, and pancreatic islet cell damage in diabetic mice. Infected diabetic mice displayed higher mortality, inflammation (elevated TNF-α, IL-6, IL-1β), and fibrinolytic activity (PAI-1), alongside dysregulated diabetes-related hormones (GLP-1, leptin, ghrelin, resistin) compared to non-diabetic controls. Sitagliptin treatment reduced organ injury, hyperglycemia, inflammation, and fibrinolytic activity while improving insulin resistance and glucose metabolism. This was evidenced by decreased fasting blood glucose levels, improved insulin sensitivity, and elevated insulin and GLP-1 levels. These findings suggest sitagliptin is a promising therapeutic strategy to mitigate the severity of COVID-19 in experimental diabetes by modulating inflammation and improving metabolic syndrome. Further mechanistic investigations revealed that the level of hACE2 expression, along with the activation of NF-κB and IRS-1, play critical roles in the development of SARS-CoV-2-induced diabetes, the exacerbation of pre-existing diabetes, and the therapeutic efficacy of sitagliptin.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
12.30
自引率
0.00%
发文量
218
审稿时长
32 days
期刊介绍: BBA Molecular Basis of Disease addresses the biochemistry and molecular genetics of disease processes and models of human disease. This journal covers aspects of aging, cancer, metabolic-, neurological-, and immunological-based disease. Manuscripts focused on using animal models to elucidate biochemical and mechanistic insight in each of these conditions, are particularly encouraged. Manuscripts should emphasize the underlying mechanisms of disease pathways and provide novel contributions to the understanding and/or treatment of these disorders. Highly descriptive and method development submissions may be declined without full review. The submission of uninvited reviews to BBA - Molecular Basis of Disease is strongly discouraged, and any such uninvited review should be accompanied by a coverletter outlining the compelling reasons why the review should be considered.
期刊最新文献
Development and validation of a kinase-related gene signature as a novel diagnostic and prognostic model for prostate cancer Exploration of common molecular mechanisms of psoriatic arthritis and aging based on integrated bioinformatics and single-cell RNA-seq analysis Pathogenesis and therapeutic effect of sitagliptin in experimental diabetic model of COVID-19 Editorial Board SP1/ADAM10/DRP1 axis links intercellular communication between smooth muscle cells and endothelial cells under hypoxia pulmonary hypertension
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1