Jia Du , Qi Liu , Hengrui Qiu , Yongqiang Zhang , Wenxiu He
{"title":"ZnCo2O4/graphene@NF nanocomposites as high-capacity anode materials for lithium-ion batteries","authors":"Jia Du , Qi Liu , Hengrui Qiu , Yongqiang Zhang , Wenxiu He","doi":"10.1016/j.diamond.2025.112121","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, a three-dimensional composite of ZnCo<sub>2</sub>O<sub>4</sub>/graphene@nickel foam (ZCO/G@NF) was prepared for lithium-ion battery anode. It eliminates the tedious steps of traditional coating and maintains a stable structure during charging and discharging, which is not easy to collapse. The binder-free electrode prevents agglomeration of nanosheets and accelerates the transfer efficiency of electrons and ions. As a lithium anode showing excellent cycling and multiplication performance, the discharge capacity can still reach 1128 mAh/g after 100 cycles at a current density of 0.1 A/g, and when the current reaches 1.4 A/g, it can still maintain a reversible capacity of 760mAh/g. The material has high reversible capacity, good cycling stability, and good multiplicity performance. Combining the advantages of self-supported structure, carbon composite, and nanomorphology design, the electrochemical performance of ZnCo<sub>2</sub>O<sub>4</sub> is comprehensively improved.</div></div>","PeriodicalId":11266,"journal":{"name":"Diamond and Related Materials","volume":"153 ","pages":"Article 112121"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diamond and Related Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925963525001785","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, a three-dimensional composite of ZnCo2O4/graphene@nickel foam (ZCO/G@NF) was prepared for lithium-ion battery anode. It eliminates the tedious steps of traditional coating and maintains a stable structure during charging and discharging, which is not easy to collapse. The binder-free electrode prevents agglomeration of nanosheets and accelerates the transfer efficiency of electrons and ions. As a lithium anode showing excellent cycling and multiplication performance, the discharge capacity can still reach 1128 mAh/g after 100 cycles at a current density of 0.1 A/g, and when the current reaches 1.4 A/g, it can still maintain a reversible capacity of 760mAh/g. The material has high reversible capacity, good cycling stability, and good multiplicity performance. Combining the advantages of self-supported structure, carbon composite, and nanomorphology design, the electrochemical performance of ZnCo2O4 is comprehensively improved.
期刊介绍:
DRM is a leading international journal that publishes new fundamental and applied research on all forms of diamond, the integration of diamond with other advanced materials and development of technologies exploiting diamond. The synthesis, characterization and processing of single crystal diamond, polycrystalline films, nanodiamond powders and heterostructures with other advanced materials are encouraged topics for technical and review articles. In addition to diamond, the journal publishes manuscripts on the synthesis, characterization and application of other related materials including diamond-like carbons, carbon nanotubes, graphene, and boron and carbon nitrides. Articles are sought on the chemical functionalization of diamond and related materials as well as their use in electrochemistry, energy storage and conversion, chemical and biological sensing, imaging, thermal management, photonic and quantum applications, electron emission and electronic devices.
The International Conference on Diamond and Carbon Materials has evolved into the largest and most well attended forum in the field of diamond, providing a forum to showcase the latest results in the science and technology of diamond and other carbon materials such as carbon nanotubes, graphene, and diamond-like carbon. Run annually in association with Diamond and Related Materials the conference provides junior and established researchers the opportunity to exchange the latest results ranging from fundamental physical and chemical concepts to applied research focusing on the next generation carbon-based devices.