Manufacturing of irregular shapes through force control in incremental sheet forming with active medium

IF 3.9 Q2 ENGINEERING, INDUSTRIAL Advances in Industrial and Manufacturing Engineering Pub Date : 2025-02-11 DOI:10.1016/j.aime.2025.100157
Sebastian Thiery , Mazhar Zein El Abdine , Jens Heger , Noomane Ben Khalifa
{"title":"Manufacturing of irregular shapes through force control in incremental sheet forming with active medium","authors":"Sebastian Thiery ,&nbsp;Mazhar Zein El Abdine ,&nbsp;Jens Heger ,&nbsp;Noomane Ben Khalifa","doi":"10.1016/j.aime.2025.100157","DOIUrl":null,"url":null,"abstract":"<div><div>Convex shapes can be created in incremental sheet forming by supporting the workpiece with the pressure of an active medium. In this paper, a method is presented for creating irregular convex shapes by adjusting the pressure to control the forming forces. At first, the general characteristics of the forming forces in incremental sheet forming with active medium (IFAM) are investigated based on a truncated pyramid and a truncated cone. The findings show that the pressure has to be adapted for each contour of the toolpath to achieve a specific wall angle. However, this strategy cannot be applied for an irregular shape consisting of half a truncated pyramid and half a truncated cone since the forming forces fluctuate over one contour. To enhance the control approach, a data set is subsequently generated by recording the forming forces under the influence of the wall angle. The data analysis reveals a strong correlation between the height difference per contour and the tangential force. Finally, a control concept is proposed to adjust the tangential force and is subsequently validated on the irregular-shaped part. The results prove that irregular shapes require a sophisticated control of the forming forces to increase the geometrical accuracy.</div></div>","PeriodicalId":34573,"journal":{"name":"Advances in Industrial and Manufacturing Engineering","volume":"10 ","pages":"Article 100157"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Industrial and Manufacturing Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666912925000017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

Abstract

Convex shapes can be created in incremental sheet forming by supporting the workpiece with the pressure of an active medium. In this paper, a method is presented for creating irregular convex shapes by adjusting the pressure to control the forming forces. At first, the general characteristics of the forming forces in incremental sheet forming with active medium (IFAM) are investigated based on a truncated pyramid and a truncated cone. The findings show that the pressure has to be adapted for each contour of the toolpath to achieve a specific wall angle. However, this strategy cannot be applied for an irregular shape consisting of half a truncated pyramid and half a truncated cone since the forming forces fluctuate over one contour. To enhance the control approach, a data set is subsequently generated by recording the forming forces under the influence of the wall angle. The data analysis reveals a strong correlation between the height difference per contour and the tangential force. Finally, a control concept is proposed to adjust the tangential force and is subsequently validated on the irregular-shaped part. The results prove that irregular shapes require a sophisticated control of the forming forces to increase the geometrical accuracy.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Industrial and Manufacturing Engineering
Advances in Industrial and Manufacturing Engineering Engineering-Engineering (miscellaneous)
CiteScore
6.60
自引率
0.00%
发文量
31
审稿时长
18 days
期刊最新文献
3D-printed motorcycle seats: Replicating polymer foam performance for rapid prototyping and rider comfort Manufacturing of irregular shapes through force control in incremental sheet forming with active medium Analytical criterion to prevent thermal overshoot during dynamic curing of thick composite laminates Experimental investigation on micro-EDM hybrid drilling process Impact of graphene nanoparticles on DLP-printed parts' mechanical behavior
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1