Jong-Ik Park , Sihoon Seong , JunKyu Lee , Cheol-Ho Hong
{"title":"Vortex Feature Positioning: Bridging tabular IIoT data and image-based deep learning","authors":"Jong-Ik Park , Sihoon Seong , JunKyu Lee , Cheol-Ho Hong","doi":"10.1016/j.iot.2025.101533","DOIUrl":null,"url":null,"abstract":"<div><div>Tabular data from IIoT devices are typically analyzed using decision tree-based machine learning techniques, which struggle with high-dimensional and numeric data. To overcome these limitations, techniques converting tabular data into images have been developed, leveraging the strengths of image-based deep learning approaches such as Convolutional Neural Networks. These methods cluster similar features into distinct image areas with fixed sizes, regardless of the number of features, resembling actual photographs. However, this increases the possibility of overfitting, as similar features, when selected carefully in a tabular format, are often discarded to prevent this issue. Additionally, fixed image sizes can lead to wasted pixels with fewer features, resulting in computational inefficiency. We introduce Vortex Feature Positioning (VFP) to address these issues. VFP arranges features based on their correlation, spacing similar ones in a vortex pattern from the image center, with the image size determined by the attribute count. VFP outperforms traditional machine learning methods and existing conversion techniques in tests across seven datasets with varying real-valued attributes.</div></div>","PeriodicalId":29968,"journal":{"name":"Internet of Things","volume":"31 ","pages":"Article 101533"},"PeriodicalIF":6.0000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet of Things","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542660525000460","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Tabular data from IIoT devices are typically analyzed using decision tree-based machine learning techniques, which struggle with high-dimensional and numeric data. To overcome these limitations, techniques converting tabular data into images have been developed, leveraging the strengths of image-based deep learning approaches such as Convolutional Neural Networks. These methods cluster similar features into distinct image areas with fixed sizes, regardless of the number of features, resembling actual photographs. However, this increases the possibility of overfitting, as similar features, when selected carefully in a tabular format, are often discarded to prevent this issue. Additionally, fixed image sizes can lead to wasted pixels with fewer features, resulting in computational inefficiency. We introduce Vortex Feature Positioning (VFP) to address these issues. VFP arranges features based on their correlation, spacing similar ones in a vortex pattern from the image center, with the image size determined by the attribute count. VFP outperforms traditional machine learning methods and existing conversion techniques in tests across seven datasets with varying real-valued attributes.
期刊介绍:
Internet of Things; Engineering Cyber Physical Human Systems is a comprehensive journal encouraging cross collaboration between researchers, engineers and practitioners in the field of IoT & Cyber Physical Human Systems. The journal offers a unique platform to exchange scientific information on the entire breadth of technology, science, and societal applications of the IoT.
The journal will place a high priority on timely publication, and provide a home for high quality.
Furthermore, IOT is interested in publishing topical Special Issues on any aspect of IOT.