Petrogenesis and tectonic implications of the Neoproterozoic A-type granite in the Quanji Massif, northeastern of the Tibetan Plateau

IF 3.2 2区 地球科学 Q2 GEOSCIENCES, MULTIDISCIPLINARY Precambrian Research Pub Date : 2025-02-17 DOI:10.1016/j.precamres.2025.107732
Zhenwei Feng, Wei Li, Le Zhang, Li Liang, Falak Sheir, Liuqing Jiang, Chao Wang, Zhihao Ma
{"title":"Petrogenesis and tectonic implications of the Neoproterozoic A-type granite in the Quanji Massif, northeastern of the Tibetan Plateau","authors":"Zhenwei Feng,&nbsp;Wei Li,&nbsp;Le Zhang,&nbsp;Li Liang,&nbsp;Falak Sheir,&nbsp;Liuqing Jiang,&nbsp;Chao Wang,&nbsp;Zhihao Ma","doi":"10.1016/j.precamres.2025.107732","DOIUrl":null,"url":null,"abstract":"<div><div>A-type granites have unique geochemical characteristics, indicating an extensional tectonic environment, thus providing critical constraints on magma sources and tectonic mechanisms, and playing a crucial role in reconstructing orogenic events. In this contribution, we conducted a systematic study on zircon U-Pb geochronology, whole-rock geochemistry, and zircon Hf isotope of the new identified A-type granites in the Quanji Massif in the northeastern Tibetan Plateau to discuss its petrogenesis and the tectonic implications. The zircon U-Pb dating results show that the crystallization ages of granites and granite porphyries are 797 ± 8 Ma and 799 ± 7 Ma, respectively, indicating that they were formed in the Neoproterozoic. Geochemically, these rocks have high SiO<sub>2</sub> (67.47–75.74 wt%) and total alkali (Na<sub>2</sub>O + K<sub>2</sub>O = 6.89–8.84 wt%) contents, low MgO (0.11–1.37 wt%), CaO (0.76–1.29 wt%), and P<sub>2</sub>O<sub>5</sub> (0.05–0.18 wt%) contents, with negative anomalies of Nb, Ta, Ti, Sr, and Eu elements. They have high FeO<sup>T</sup> /(MgO + FeO<sup>T</sup>) values, Zr + Nb + Ce + Y contents (343–562 ppm), 10000 × Ga/Al ratio (2.12–3.20), and zircon saturation temperature (804–860 ℃), which are consistent with the characteristics of typical A-type granites. Their high K<sub>2</sub>O/Na<sub>2</sub>O ratios, low Sr/Y and La/Yb ratios, combined with the zircon ε<sub>Hf</sub>(t) values (–4.04 to 3.25) and the whole-rock ε<sub>Nd</sub>(t) values (–8.28 to –4.91), indicate that the A-type granites were derived from partial melting of the calc-alkaline rocks in the ancient crust with a moderate contribution of juvenile crust under high temperature and low-pressure conditions. Based on the tectonic setting discrimination diagram combined with regional data, it is comprehensively determined that the A-type granites were formed in the post-collisional extensional environment, which is a response to the breakup of the Rodinia supercontinent. According to the comprehensive data of the Quanji Massif and adjacent areas show that the Quanji Massif, the Qaidam Block and the Qilian Block were combined into a unified block during the Late Mesoproterozoic-Neoproterozoic and participated in the evolution of the Rodinia supercontinent.</div></div>","PeriodicalId":49674,"journal":{"name":"Precambrian Research","volume":"419 ","pages":"Article 107732"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precambrian Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301926825000580","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A-type granites have unique geochemical characteristics, indicating an extensional tectonic environment, thus providing critical constraints on magma sources and tectonic mechanisms, and playing a crucial role in reconstructing orogenic events. In this contribution, we conducted a systematic study on zircon U-Pb geochronology, whole-rock geochemistry, and zircon Hf isotope of the new identified A-type granites in the Quanji Massif in the northeastern Tibetan Plateau to discuss its petrogenesis and the tectonic implications. The zircon U-Pb dating results show that the crystallization ages of granites and granite porphyries are 797 ± 8 Ma and 799 ± 7 Ma, respectively, indicating that they were formed in the Neoproterozoic. Geochemically, these rocks have high SiO2 (67.47–75.74 wt%) and total alkali (Na2O + K2O = 6.89–8.84 wt%) contents, low MgO (0.11–1.37 wt%), CaO (0.76–1.29 wt%), and P2O5 (0.05–0.18 wt%) contents, with negative anomalies of Nb, Ta, Ti, Sr, and Eu elements. They have high FeOT /(MgO + FeOT) values, Zr + Nb + Ce + Y contents (343–562 ppm), 10000 × Ga/Al ratio (2.12–3.20), and zircon saturation temperature (804–860 ℃), which are consistent with the characteristics of typical A-type granites. Their high K2O/Na2O ratios, low Sr/Y and La/Yb ratios, combined with the zircon εHf(t) values (–4.04 to 3.25) and the whole-rock εNd(t) values (–8.28 to –4.91), indicate that the A-type granites were derived from partial melting of the calc-alkaline rocks in the ancient crust with a moderate contribution of juvenile crust under high temperature and low-pressure conditions. Based on the tectonic setting discrimination diagram combined with regional data, it is comprehensively determined that the A-type granites were formed in the post-collisional extensional environment, which is a response to the breakup of the Rodinia supercontinent. According to the comprehensive data of the Quanji Massif and adjacent areas show that the Quanji Massif, the Qaidam Block and the Qilian Block were combined into a unified block during the Late Mesoproterozoic-Neoproterozoic and participated in the evolution of the Rodinia supercontinent.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Precambrian Research
Precambrian Research 地学-地球科学综合
CiteScore
7.20
自引率
28.90%
发文量
325
审稿时长
12 months
期刊介绍: Precambrian Research publishes studies on all aspects of the early stages of the composition, structure and evolution of the Earth and its planetary neighbours. With a focus on process-oriented and comparative studies, it covers, but is not restricted to, subjects such as: (1) Chemical, biological, biochemical and cosmochemical evolution; the origin of life; the evolution of the oceans and atmosphere; the early fossil record; palaeobiology; (2) Geochronology and isotope and elemental geochemistry; (3) Precambrian mineral deposits; (4) Geophysical aspects of the early Earth and Precambrian terrains; (5) Nature, formation and evolution of the Precambrian lithosphere and mantle including magmatic, depositional, metamorphic and tectonic processes. In addition, the editors particularly welcome integrated process-oriented studies that involve a combination of the above fields and comparative studies that demonstrate the effect of Precambrian evolution on Phanerozoic earth system processes. Regional and localised studies of Precambrian phenomena are considered appropriate only when the detail and quality allow illustration of a wider process, or when significant gaps in basic knowledge of a particular area can be filled.
期刊最新文献
Detrital zircon geochronology of the Paleoproterozoic Nonacho Basin (Northwest Territories, Canada): A record of post-collisional collapse amid supercontinent aggregation Neoarchean accretionary and collisional tectonics in the southern North China Craton: Implications for crustal growth and plate tectonic styles Petrogenesis and tectonic implications of the Neoproterozoic A-type granite in the Quanji Massif, northeastern of the Tibetan Plateau Paleoproterozoic orogenic event in the western North China Craton: Insights from zircon U-Pb-Lu-Hf isotopes and geochemistry of meta-supracrustal rocks in the Beidashan complex, Alxa block Controls on the termination of the massive chert system in the Ediacaran-Cambrian Liuchapo Formation, South China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1