Molecular modelling of 6-oxo-5-Sulfanyl-1H-Pyridine-3-Carboxylic acid and its adsorption with the silver complex: Structural, optical, charge transference, dynamics and docking to nipah virus
R. Sravanthi , S. Mahalakshmi , Jayavelu Udaya Prakash , S. Sakthivel
{"title":"Molecular modelling of 6-oxo-5-Sulfanyl-1H-Pyridine-3-Carboxylic acid and its adsorption with the silver complex: Structural, optical, charge transference, dynamics and docking to nipah virus","authors":"R. Sravanthi , S. Mahalakshmi , Jayavelu Udaya Prakash , S. Sakthivel","doi":"10.1016/j.jmgm.2025.108978","DOIUrl":null,"url":null,"abstract":"<div><div>This investigation employs DFT to evaluate the structural, molecular, and electronic feature variations of 6-oxo-5-sulfanyl-1H-pyridine-3-carboxylic acid in gas alongside various solvent media. The complex interactions occurring within the molecule are recognised using the Independent gradient model. The application of various electric fields are used to determine the electrical properties of the compound. The topographical inspection shows extreme electron-dense zones to display a good electron reception character of the molecule. The intense covalence nature is maximal between the aromatic zone's C-C and C-N regions. The compound possesses a maximum interaction with the (LP) → π∗ and π → π∗ transitions. The optical and absorbance property shows an upright enhancement in the addition of the solvents. The significant transference of charges inside the compound is signified using the D and H index values and heat maps. The thermal assessment established that the compound is sustainable at varied temperatures with the pressure at 1 atm. The carboxylate ion of 6O5S1HP3CA interacts with the Ag + clusters and its adsorption characteristics are confirmed by the SERS spectrum. The complex's stability is determined by the MD simulations at various speeds. The physiological scrutiny demonstrates that both the compound and complex are benign and the antiviral activities were studied for Nipah virus for the proteins 7pno and 7skt.</div></div>","PeriodicalId":16361,"journal":{"name":"Journal of molecular graphics & modelling","volume":"136 ","pages":"Article 108978"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular graphics & modelling","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1093326325000385","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
This investigation employs DFT to evaluate the structural, molecular, and electronic feature variations of 6-oxo-5-sulfanyl-1H-pyridine-3-carboxylic acid in gas alongside various solvent media. The complex interactions occurring within the molecule are recognised using the Independent gradient model. The application of various electric fields are used to determine the electrical properties of the compound. The topographical inspection shows extreme electron-dense zones to display a good electron reception character of the molecule. The intense covalence nature is maximal between the aromatic zone's C-C and C-N regions. The compound possesses a maximum interaction with the (LP) → π∗ and π → π∗ transitions. The optical and absorbance property shows an upright enhancement in the addition of the solvents. The significant transference of charges inside the compound is signified using the D and H index values and heat maps. The thermal assessment established that the compound is sustainable at varied temperatures with the pressure at 1 atm. The carboxylate ion of 6O5S1HP3CA interacts with the Ag + clusters and its adsorption characteristics are confirmed by the SERS spectrum. The complex's stability is determined by the MD simulations at various speeds. The physiological scrutiny demonstrates that both the compound and complex are benign and the antiviral activities were studied for Nipah virus for the proteins 7pno and 7skt.
期刊介绍:
The Journal of Molecular Graphics and Modelling is devoted to the publication of papers on the uses of computers in theoretical investigations of molecular structure, function, interaction, and design. The scope of the journal includes all aspects of molecular modeling and computational chemistry, including, for instance, the study of molecular shape and properties, molecular simulations, protein and polymer engineering, drug design, materials design, structure-activity and structure-property relationships, database mining, and compound library design.
As a primary research journal, JMGM seeks to bring new knowledge to the attention of our readers. As such, submissions to the journal need to not only report results, but must draw conclusions and explore implications of the work presented. Authors are strongly encouraged to bear this in mind when preparing manuscripts. Routine applications of standard modelling approaches, providing only very limited new scientific insight, will not meet our criteria for publication. Reproducibility of reported calculations is an important issue. Wherever possible, we urge authors to enhance their papers with Supplementary Data, for example, in QSAR studies machine-readable versions of molecular datasets or in the development of new force-field parameters versions of the topology and force field parameter files. Routine applications of existing methods that do not lead to genuinely new insight will not be considered.