Deep percolation and soil water dynamics under different sand-fixing vegetation types in two different precipitation regions in semiarid sandy Land, Northern China

IF 5.6 1区 农林科学 Q1 AGRONOMY Agricultural and Forest Meteorology Pub Date : 2025-02-18 DOI:10.1016/j.agrformet.2025.110455
Liang He , Yiben Cheng , Wenbin Yang , Jianbin Guo , Zhiming Xin , Lin Chen , Wei Xiong , Qianqian Wang , Huaiyuan Liu
{"title":"Deep percolation and soil water dynamics under different sand-fixing vegetation types in two different precipitation regions in semiarid sandy Land, Northern China","authors":"Liang He ,&nbsp;Yiben Cheng ,&nbsp;Wenbin Yang ,&nbsp;Jianbin Guo ,&nbsp;Zhiming Xin ,&nbsp;Lin Chen ,&nbsp;Wei Xiong ,&nbsp;Qianqian Wang ,&nbsp;Huaiyuan Liu","doi":"10.1016/j.agrformet.2025.110455","DOIUrl":null,"url":null,"abstract":"<div><div>Large-scale afforestation has undoubtedly aided in combating desertification but it also exerts negative effects on the hydrological cycle, particularly on deep percolation (DP) and soil water dynamics. This study aims to fill the gap in current research on the effect of different sand-fixing vegetation types on DP and soil water in two different precipitation regions through in-situ tests and direct measurements. The experiment focused on various vegetation types in two sites with different precipitation levels: the Mu Us Sandy Land with four plots (mobile sand [MS], <em>Artemisia ordosica</em> semishrub fixed [AOF], <em>Salix psammophila</em> shrub fixed [SPF], and <em>Pinus sylvestrix</em> var. <em>Mongolica</em> arbor fixed [PSMF] sands) and the Horqin Sandy Land with three plots (mobile sand, <em>Caragana microphylla</em> shrub fixed [CMF] and <em>Populus bolleana Lauche</em> arbor fixed [PBLF] sands). To accurately estimate DP and soil water under various vegetation types, DP was measured using a deep percolation recorder and the relative extractable soil water (RESW) was calculated based on soil water. The rainfall threshold (10 mm) of MS for the occurrence of DP was the same in both sites but the precipitation amount during a rainfall event causing significant increases in DP was different. The canopy interception and root uptake of vegetation significantly reduced DP amount compared with MS at the daily and monthly scales. The DP amount in vegetated plots in the two areas could be ranked as follows: semishrub &gt; shrub &gt; arbor. Compared with MS, the soil profile (0–200 cm) of vegetated plots showed significant decreases in RESW. Within the soil layer of 40–200 cm, RESW was significantly higher in shrub plots than in arbor plots. Arbor plots had an imbalanced water budget, consuming more deep soil water (120–200 cm). Our findings provide a scientific foundation for ecological restoration and water resource management.</div></div>","PeriodicalId":50839,"journal":{"name":"Agricultural and Forest Meteorology","volume":"364 ","pages":"Article 110455"},"PeriodicalIF":5.6000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural and Forest Meteorology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168192325000759","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Large-scale afforestation has undoubtedly aided in combating desertification but it also exerts negative effects on the hydrological cycle, particularly on deep percolation (DP) and soil water dynamics. This study aims to fill the gap in current research on the effect of different sand-fixing vegetation types on DP and soil water in two different precipitation regions through in-situ tests and direct measurements. The experiment focused on various vegetation types in two sites with different precipitation levels: the Mu Us Sandy Land with four plots (mobile sand [MS], Artemisia ordosica semishrub fixed [AOF], Salix psammophila shrub fixed [SPF], and Pinus sylvestrix var. Mongolica arbor fixed [PSMF] sands) and the Horqin Sandy Land with three plots (mobile sand, Caragana microphylla shrub fixed [CMF] and Populus bolleana Lauche arbor fixed [PBLF] sands). To accurately estimate DP and soil water under various vegetation types, DP was measured using a deep percolation recorder and the relative extractable soil water (RESW) was calculated based on soil water. The rainfall threshold (10 mm) of MS for the occurrence of DP was the same in both sites but the precipitation amount during a rainfall event causing significant increases in DP was different. The canopy interception and root uptake of vegetation significantly reduced DP amount compared with MS at the daily and monthly scales. The DP amount in vegetated plots in the two areas could be ranked as follows: semishrub > shrub > arbor. Compared with MS, the soil profile (0–200 cm) of vegetated plots showed significant decreases in RESW. Within the soil layer of 40–200 cm, RESW was significantly higher in shrub plots than in arbor plots. Arbor plots had an imbalanced water budget, consuming more deep soil water (120–200 cm). Our findings provide a scientific foundation for ecological restoration and water resource management.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.30
自引率
9.70%
发文量
415
审稿时长
69 days
期刊介绍: Agricultural and Forest Meteorology is an international journal for the publication of original articles and reviews on the inter-relationship between meteorology, agriculture, forestry, and natural ecosystems. Emphasis is on basic and applied scientific research relevant to practical problems in the field of plant and soil sciences, ecology and biogeochemistry as affected by weather as well as climate variability and change. Theoretical models should be tested against experimental data. Articles must appeal to an international audience. Special issues devoted to single topics are also published. Typical topics include canopy micrometeorology (e.g. canopy radiation transfer, turbulence near the ground, evapotranspiration, energy balance, fluxes of trace gases), micrometeorological instrumentation (e.g., sensors for trace gases, flux measurement instruments, radiation measurement techniques), aerobiology (e.g. the dispersion of pollen, spores, insects and pesticides), biometeorology (e.g. the effect of weather and climate on plant distribution, crop yield, water-use efficiency, and plant phenology), forest-fire/weather interactions, and feedbacks from vegetation to weather and the climate system.
期刊最新文献
Deep percolation and soil water dynamics under different sand-fixing vegetation types in two different precipitation regions in semiarid sandy Land, Northern China Evaluating the sensitivity of vegetation indices to leaf area index variability at individual tree level using multispectral drone acquisitions Global vegetation vulnerability to drought is underestimated due to the lagged effect Rice yield stability and its determinants across different rice-cropping systems in China Robust filling of extra-long gaps in eddy covariance CO2 flux measurements from a temperate deciduous forest using eXtreme Gradient Boosting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1