Deep percolation and soil water dynamics under different sand-fixing vegetation types in two different precipitation regions in semiarid sandy Land, Northern China
Liang He , Yiben Cheng , Wenbin Yang , Jianbin Guo , Zhiming Xin , Lin Chen , Wei Xiong , Qianqian Wang , Huaiyuan Liu
{"title":"Deep percolation and soil water dynamics under different sand-fixing vegetation types in two different precipitation regions in semiarid sandy Land, Northern China","authors":"Liang He , Yiben Cheng , Wenbin Yang , Jianbin Guo , Zhiming Xin , Lin Chen , Wei Xiong , Qianqian Wang , Huaiyuan Liu","doi":"10.1016/j.agrformet.2025.110455","DOIUrl":null,"url":null,"abstract":"<div><div>Large-scale afforestation has undoubtedly aided in combating desertification but it also exerts negative effects on the hydrological cycle, particularly on deep percolation (DP) and soil water dynamics. This study aims to fill the gap in current research on the effect of different sand-fixing vegetation types on DP and soil water in two different precipitation regions through in-situ tests and direct measurements. The experiment focused on various vegetation types in two sites with different precipitation levels: the Mu Us Sandy Land with four plots (mobile sand [MS], <em>Artemisia ordosica</em> semishrub fixed [AOF], <em>Salix psammophila</em> shrub fixed [SPF], and <em>Pinus sylvestrix</em> var. <em>Mongolica</em> arbor fixed [PSMF] sands) and the Horqin Sandy Land with three plots (mobile sand, <em>Caragana microphylla</em> shrub fixed [CMF] and <em>Populus bolleana Lauche</em> arbor fixed [PBLF] sands). To accurately estimate DP and soil water under various vegetation types, DP was measured using a deep percolation recorder and the relative extractable soil water (RESW) was calculated based on soil water. The rainfall threshold (10 mm) of MS for the occurrence of DP was the same in both sites but the precipitation amount during a rainfall event causing significant increases in DP was different. The canopy interception and root uptake of vegetation significantly reduced DP amount compared with MS at the daily and monthly scales. The DP amount in vegetated plots in the two areas could be ranked as follows: semishrub > shrub > arbor. Compared with MS, the soil profile (0–200 cm) of vegetated plots showed significant decreases in RESW. Within the soil layer of 40–200 cm, RESW was significantly higher in shrub plots than in arbor plots. Arbor plots had an imbalanced water budget, consuming more deep soil water (120–200 cm). Our findings provide a scientific foundation for ecological restoration and water resource management.</div></div>","PeriodicalId":50839,"journal":{"name":"Agricultural and Forest Meteorology","volume":"364 ","pages":"Article 110455"},"PeriodicalIF":5.6000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural and Forest Meteorology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168192325000759","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Large-scale afforestation has undoubtedly aided in combating desertification but it also exerts negative effects on the hydrological cycle, particularly on deep percolation (DP) and soil water dynamics. This study aims to fill the gap in current research on the effect of different sand-fixing vegetation types on DP and soil water in two different precipitation regions through in-situ tests and direct measurements. The experiment focused on various vegetation types in two sites with different precipitation levels: the Mu Us Sandy Land with four plots (mobile sand [MS], Artemisia ordosica semishrub fixed [AOF], Salix psammophila shrub fixed [SPF], and Pinus sylvestrix var. Mongolica arbor fixed [PSMF] sands) and the Horqin Sandy Land with three plots (mobile sand, Caragana microphylla shrub fixed [CMF] and Populus bolleana Lauche arbor fixed [PBLF] sands). To accurately estimate DP and soil water under various vegetation types, DP was measured using a deep percolation recorder and the relative extractable soil water (RESW) was calculated based on soil water. The rainfall threshold (10 mm) of MS for the occurrence of DP was the same in both sites but the precipitation amount during a rainfall event causing significant increases in DP was different. The canopy interception and root uptake of vegetation significantly reduced DP amount compared with MS at the daily and monthly scales. The DP amount in vegetated plots in the two areas could be ranked as follows: semishrub > shrub > arbor. Compared with MS, the soil profile (0–200 cm) of vegetated plots showed significant decreases in RESW. Within the soil layer of 40–200 cm, RESW was significantly higher in shrub plots than in arbor plots. Arbor plots had an imbalanced water budget, consuming more deep soil water (120–200 cm). Our findings provide a scientific foundation for ecological restoration and water resource management.
期刊介绍:
Agricultural and Forest Meteorology is an international journal for the publication of original articles and reviews on the inter-relationship between meteorology, agriculture, forestry, and natural ecosystems. Emphasis is on basic and applied scientific research relevant to practical problems in the field of plant and soil sciences, ecology and biogeochemistry as affected by weather as well as climate variability and change. Theoretical models should be tested against experimental data. Articles must appeal to an international audience. Special issues devoted to single topics are also published.
Typical topics include canopy micrometeorology (e.g. canopy radiation transfer, turbulence near the ground, evapotranspiration, energy balance, fluxes of trace gases), micrometeorological instrumentation (e.g., sensors for trace gases, flux measurement instruments, radiation measurement techniques), aerobiology (e.g. the dispersion of pollen, spores, insects and pesticides), biometeorology (e.g. the effect of weather and climate on plant distribution, crop yield, water-use efficiency, and plant phenology), forest-fire/weather interactions, and feedbacks from vegetation to weather and the climate system.