Dual-function magnetic reduced graphene oxide nanocomposite: Enhanced caffeine abatement via adsorption and photo-Fenton degradation

Florencia M. Onaga Medina , Marcos E. Peralta , Lorena Diblasi , Marcelo J. Avena , María E. Parolo
{"title":"Dual-function magnetic reduced graphene oxide nanocomposite: Enhanced caffeine abatement via adsorption and photo-Fenton degradation","authors":"Florencia M. Onaga Medina ,&nbsp;Marcos E. Peralta ,&nbsp;Lorena Diblasi ,&nbsp;Marcelo J. Avena ,&nbsp;María E. Parolo","doi":"10.1016/j.nxmate.2025.100547","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, an easy method for the preparation of reduced graphene oxide-magnetite nanocomposite was developed via the reduction of graphene oxide by ferrous ions and in-situ synthesis of magnetite nanoparticles on graphene sheets. The resulting magnetic nanocomposite (rGO_m) was tested in the abatement of caffeine, serving as a model for emerging pollutants. The reduction of caffeine concentration was accomplished because of the dual-function of rGO_m both as adsorbent and photo-Fenton catalyst. At pH 3, rGO_m achieved a 99 % degradation of caffeine in 90 min and was able to be reused in 4 consecutive cycles remaining 80 % of degradation capacity. At mild acidic conditions, the combined effect of adsorption and photo-Fenton reaction allows rGO_m to reach an 85 % decrease of initial caffeine concentration in 2 h, under simulated solar light radiation. This abatement capacity is noteworthy for high initial caffeine concentration (30 mg L<sup>−1</sup>) and simulated solar light compared to similar nanocomposites tested under more favorable conditions, such us, low initial concentration and/or UV-light irradiation. Furthermore, rGO_m serving as adsorbent for caffeine attained a maximum uptake of 56.5 mg g<sup>−1</sup> at pH 5 and was able to be reused for 6 consecutive cycles without loss of adsorption capacity. Through its dual function this nanocomposite achieved enhanced adsorption and oxidative degradation of caffeine, making it a competitive option for removing emerging pollutants from wastewater under simulated solar light.</div></div>","PeriodicalId":100958,"journal":{"name":"Next Materials","volume":"8 ","pages":"Article 100547"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949822825000656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, an easy method for the preparation of reduced graphene oxide-magnetite nanocomposite was developed via the reduction of graphene oxide by ferrous ions and in-situ synthesis of magnetite nanoparticles on graphene sheets. The resulting magnetic nanocomposite (rGO_m) was tested in the abatement of caffeine, serving as a model for emerging pollutants. The reduction of caffeine concentration was accomplished because of the dual-function of rGO_m both as adsorbent and photo-Fenton catalyst. At pH 3, rGO_m achieved a 99 % degradation of caffeine in 90 min and was able to be reused in 4 consecutive cycles remaining 80 % of degradation capacity. At mild acidic conditions, the combined effect of adsorption and photo-Fenton reaction allows rGO_m to reach an 85 % decrease of initial caffeine concentration in 2 h, under simulated solar light radiation. This abatement capacity is noteworthy for high initial caffeine concentration (30 mg L−1) and simulated solar light compared to similar nanocomposites tested under more favorable conditions, such us, low initial concentration and/or UV-light irradiation. Furthermore, rGO_m serving as adsorbent for caffeine attained a maximum uptake of 56.5 mg g−1 at pH 5 and was able to be reused for 6 consecutive cycles without loss of adsorption capacity. Through its dual function this nanocomposite achieved enhanced adsorption and oxidative degradation of caffeine, making it a competitive option for removing emerging pollutants from wastewater under simulated solar light.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experimental data-driven efficient exploration of the composition and process conditions of Li-rich NASICON-type solid electrolytes Additive-free hydrothermal synthesis of SnS2 nanostructures and its enhanced photocatalytic and photoelectrochemical performance under visible solar light Efficient photocatalytic degradation of industrial dyes using SnWO4 for wastewater treatment Development and characterization of ethosomes of Acacia senegal for improved topical treatment of breast cancer Pyro-phototronic effect enhanced self-powered photodetectors: A review on perovskite materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1