Mohammed Sakib Uddin , Bijoy Mitra , Khaled Mahmud , Syed Masiur Rahman , Shakhawat Chowdhury , Muhammad Muhitur Rahman
{"title":"An ensemble machine learning approach for predicting groundwater storage for sustainable management of water resources","authors":"Mohammed Sakib Uddin , Bijoy Mitra , Khaled Mahmud , Syed Masiur Rahman , Shakhawat Chowdhury , Muhammad Muhitur Rahman","doi":"10.1016/j.gsd.2025.101417","DOIUrl":null,"url":null,"abstract":"<div><div>Predicting groundwater storage (GWS) is essential for sustainable water resource management, especially in regions with water scarcity. This study proposes an ensemble machine learning (EML) approach (i.e., Bagging, XGBoost, and CatBoost) leveraging the Landsat-derived parameters to forecast GWS due to the limited availability of field observations. This modeling framework captures complex relationships between socioeconomic and environmental variables and groundwater storage in Chittagong City. Multiple indices, including the normalized difference vegetation index (NDVI), normalized difference built-up index (NDBI), modified normalized difference water index (MNDWI), and urban heat island (UHI), were utilized in the models. A digital elevation model (DEM), nighttime light (NTL), and nearest distance to water bodies from streamline data were used to investigate their impact on GWS. The empirical Bayesian kriging (EBK) method was used to downscale the GWS and NTL data. The outputs of the models were evaluated using statistical indicators such as the coefficient of determination (R<sup>2</sup>), root mean square error (RMSE), and Willmott's indicator of agreement (WIA). The Bagging and CatBoost models had higher R<sup>2</sup> and lower RMSE values (R<sup>2</sup> > 0.965, RMSE <1.604 mm) during the summer, while the XGBoost and CatBoost models performed better (R<sup>2</sup> > 0.966, RMSE <1.686 mm) in the winter. The results demonstrated that the utilization of Landsat metrics had the potential to serve as the predictive factors for estimating GWS. The proposed modeling framework can be used to predict GWS in regions with limited data, which will help policymakers, urban planners, and environmental organizations develop sustainable groundwater management strategies.</div></div>","PeriodicalId":37879,"journal":{"name":"Groundwater for Sustainable Development","volume":"29 ","pages":"Article 101417"},"PeriodicalIF":4.9000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groundwater for Sustainable Development","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352801X25000141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Predicting groundwater storage (GWS) is essential for sustainable water resource management, especially in regions with water scarcity. This study proposes an ensemble machine learning (EML) approach (i.e., Bagging, XGBoost, and CatBoost) leveraging the Landsat-derived parameters to forecast GWS due to the limited availability of field observations. This modeling framework captures complex relationships between socioeconomic and environmental variables and groundwater storage in Chittagong City. Multiple indices, including the normalized difference vegetation index (NDVI), normalized difference built-up index (NDBI), modified normalized difference water index (MNDWI), and urban heat island (UHI), were utilized in the models. A digital elevation model (DEM), nighttime light (NTL), and nearest distance to water bodies from streamline data were used to investigate their impact on GWS. The empirical Bayesian kriging (EBK) method was used to downscale the GWS and NTL data. The outputs of the models were evaluated using statistical indicators such as the coefficient of determination (R2), root mean square error (RMSE), and Willmott's indicator of agreement (WIA). The Bagging and CatBoost models had higher R2 and lower RMSE values (R2 > 0.965, RMSE <1.604 mm) during the summer, while the XGBoost and CatBoost models performed better (R2 > 0.966, RMSE <1.686 mm) in the winter. The results demonstrated that the utilization of Landsat metrics had the potential to serve as the predictive factors for estimating GWS. The proposed modeling framework can be used to predict GWS in regions with limited data, which will help policymakers, urban planners, and environmental organizations develop sustainable groundwater management strategies.
期刊介绍:
Groundwater for Sustainable Development is directed to different stakeholders and professionals, including government and non-governmental organizations, international funding agencies, universities, public water institutions, public health and other public/private sector professionals, and other relevant institutions. It is aimed at professionals, academics and students in the fields of disciplines such as: groundwater and its connection to surface hydrology and environment, soil sciences, engineering, ecology, microbiology, atmospheric sciences, analytical chemistry, hydro-engineering, water technology, environmental ethics, economics, public health, policy, as well as social sciences, legal disciplines, or any other area connected with water issues. The objectives of this journal are to facilitate: • The improvement of effective and sustainable management of water resources across the globe. • The improvement of human access to groundwater resources in adequate quantity and good quality. • The meeting of the increasing demand for drinking and irrigation water needed for food security to contribute to a social and economically sound human development. • The creation of a global inter- and multidisciplinary platform and forum to improve our understanding of groundwater resources and to advocate their effective and sustainable management and protection against contamination. • Interdisciplinary information exchange and to stimulate scientific research in the fields of groundwater related sciences and social and health sciences required to achieve the United Nations Millennium Development Goals for sustainable development.