Forearm Motion and Hand Grasp Prediction Based on Target Muscle Bioimpedance for Human–Machine Interaction

IF 4.8 2区 医学 Q2 ENGINEERING, BIOMEDICAL IEEE Transactions on Neural Systems and Rehabilitation Engineering Pub Date : 2025-02-04 DOI:10.1109/TNSRE.2025.3538609
Tianyang Yao;Yu Wu;Dai Jiang;Richard Bayford;Andreas Demosthenous
{"title":"Forearm Motion and Hand Grasp Prediction Based on Target Muscle Bioimpedance for Human–Machine Interaction","authors":"Tianyang Yao;Yu Wu;Dai Jiang;Richard Bayford;Andreas Demosthenous","doi":"10.1109/TNSRE.2025.3538609","DOIUrl":null,"url":null,"abstract":"This paper introduces a novel methodology for simultaneously predicting hand grasp and forearm motion using target muscle bioimpedance measurements and regression models. A total of six channels, formed by nine electrodes, are employed for this multi-degree of freedom (DoF) prediction. Given the time-dependent nature of bioimpedance variation, the long short-term memory (LSTM) regression model is more competent in multi-DoF prediction, compared to linear regression (LR), support vector regression (SVR) and multilayer perceptron (MLP). In intra-subject cross-validation, MLP yields an average coefficient of determination (R2) of 0.9256 for predicting hand grasping angle, while LSTM achieves an average R2 of 0.9483 for predicting random simultaneous forearm two-DoF motion. Operation by amputees without the need to train the regression models is possible by mapping muscle bioimpedance variation directly to the prediction angle, allowing for the approximate estimation of single-DoF motion. The efficacy of these prediction approaches is demonstrated in a real-time object grasping task.","PeriodicalId":13419,"journal":{"name":"IEEE Transactions on Neural Systems and Rehabilitation Engineering","volume":"33 ","pages":"760-769"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10870334","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Neural Systems and Rehabilitation Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10870334/","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces a novel methodology for simultaneously predicting hand grasp and forearm motion using target muscle bioimpedance measurements and regression models. A total of six channels, formed by nine electrodes, are employed for this multi-degree of freedom (DoF) prediction. Given the time-dependent nature of bioimpedance variation, the long short-term memory (LSTM) regression model is more competent in multi-DoF prediction, compared to linear regression (LR), support vector regression (SVR) and multilayer perceptron (MLP). In intra-subject cross-validation, MLP yields an average coefficient of determination (R2) of 0.9256 for predicting hand grasping angle, while LSTM achieves an average R2 of 0.9483 for predicting random simultaneous forearm two-DoF motion. Operation by amputees without the need to train the regression models is possible by mapping muscle bioimpedance variation directly to the prediction angle, allowing for the approximate estimation of single-DoF motion. The efficacy of these prediction approaches is demonstrated in a real-time object grasping task.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.60
自引率
8.20%
发文量
479
审稿时长
6-12 weeks
期刊介绍: Rehabilitative and neural aspects of biomedical engineering, including functional electrical stimulation, acoustic dynamics, human performance measurement and analysis, nerve stimulation, electromyography, motor control and stimulation; and hardware and software applications for rehabilitation engineering and assistive devices.
期刊最新文献
Development of a Wearable Sleeve-Based System Combining Polymer Optical Fiber Sensors and an LSTM Network for Estimating Knee Kinematics Design of a Portable Biofeedback System for Monitoring Femoral Load During Partial Weight-Bearing Walking Exploring Control Mechanism of Motoneuron Pools for the Forearm Antagonist Synergistic Muscles Forearm Motion and Hand Grasp Prediction Based on Target Muscle Bioimpedance for Human–Machine Interaction Data-Driven Techniques for Estimating Energy Expenditure in Wheelchair Users
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1