SSGDD-YOLO: Multiscale Feature Fusion and Multiattention-Based YOLO for Smartphone Screen Glass Defect Detection

IF 4.3 2区 综合性期刊 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Sensors Journal Pub Date : 2025-01-09 DOI:10.1109/JSEN.2024.3524584
Ping Wu;Haote Zhou;Yicheng Yu;Zengdi Miao;Qianqian Pan;Xi Zhang;Jinfeng Gao
{"title":"SSGDD-YOLO: Multiscale Feature Fusion and Multiattention-Based YOLO for Smartphone Screen Glass Defect Detection","authors":"Ping Wu;Haote Zhou;Yicheng Yu;Zengdi Miao;Qianqian Pan;Xi Zhang;Jinfeng Gao","doi":"10.1109/JSEN.2024.3524584","DOIUrl":null,"url":null,"abstract":"Surface defect detection is essential for ensuring the product quality of smartphone screen glass. In this work, a smartphone screen glass defect detection model based on an enhanced YOLOv7 framework with multiscale feature fusion and multiattention, named SSGDD-you only look once (YOLO) is proposed. In the developed SSGDD-YOLO model, the branch fusion block (BFB) is integrated low-level features from multiple scales through parallel processing, to enhance the details in lower level features for minimizing the information loss as less as possible. Furthermore, the SPPCSPC module of the head is improved as the SPPCSPC-I module, by replacing the standard max pooling with local importance-based pooling (LIP) that reflects the importance of features. The developed SPPCSPC-I module allows the network to automatically learn adaptive importance weights of features during downsampling, enhancing the multiscale feature extraction capability with diverse receptive fields. Finally, a contour-mixed attention block (C-MAB) is inserted into the feature fusion section of the network, which enhances spatial and channel information of features to reduce target information loss, improving the representation capability. Experiments are conducted using a challenging real-world defect image dataset gathered from a smartphone screen glass inspection line in an industrial plant. Results show the proposed SSGDD-YOLO model can achieve the highest mAP of 62.46% among all compared methods.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"25 4","pages":"6982-6994"},"PeriodicalIF":4.3000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/10834520/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Surface defect detection is essential for ensuring the product quality of smartphone screen glass. In this work, a smartphone screen glass defect detection model based on an enhanced YOLOv7 framework with multiscale feature fusion and multiattention, named SSGDD-you only look once (YOLO) is proposed. In the developed SSGDD-YOLO model, the branch fusion block (BFB) is integrated low-level features from multiple scales through parallel processing, to enhance the details in lower level features for minimizing the information loss as less as possible. Furthermore, the SPPCSPC module of the head is improved as the SPPCSPC-I module, by replacing the standard max pooling with local importance-based pooling (LIP) that reflects the importance of features. The developed SPPCSPC-I module allows the network to automatically learn adaptive importance weights of features during downsampling, enhancing the multiscale feature extraction capability with diverse receptive fields. Finally, a contour-mixed attention block (C-MAB) is inserted into the feature fusion section of the network, which enhances spatial and channel information of features to reduce target information loss, improving the representation capability. Experiments are conducted using a challenging real-world defect image dataset gathered from a smartphone screen glass inspection line in an industrial plant. Results show the proposed SSGDD-YOLO model can achieve the highest mAP of 62.46% among all compared methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Sensors Journal
IEEE Sensors Journal 工程技术-工程:电子与电气
CiteScore
7.70
自引率
14.00%
发文量
2058
审稿时长
5.2 months
期刊介绍: The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following: -Sensor Phenomenology, Modelling, and Evaluation -Sensor Materials, Processing, and Fabrication -Chemical and Gas Sensors -Microfluidics and Biosensors -Optical Sensors -Physical Sensors: Temperature, Mechanical, Magnetic, and others -Acoustic and Ultrasonic Sensors -Sensor Packaging -Sensor Networks -Sensor Applications -Sensor Systems: Signals, Processing, and Interfaces -Actuators and Sensor Power Systems -Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting -Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data) -Sensors in Industrial Practice
期刊最新文献
Front Cover Table of Contents IEEE Sensors Journal Publication Information IEEE Sensors Council 2024 Index IEEE Sensors Journal Vol. 24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1