Promoting oxygen reduction reaction kinetics through manipulating electron redistribution in CoP/Cu3P@NC for aqueous/flexible Zn–air batteries†

IF 9.3 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Green Chemistry Pub Date : 2025-01-21 DOI:10.1039/d4gc05538a
Lixia Wang , Jiasui Huang , Jia Huang , Bowen Yao , Aling Zhou , Zhiyang Huang , Tayirjan Taylor Isimjan , Bao Wang , Xiulin Yang
{"title":"Promoting oxygen reduction reaction kinetics through manipulating electron redistribution in CoP/Cu3P@NC for aqueous/flexible Zn–air batteries†","authors":"Lixia Wang ,&nbsp;Jiasui Huang ,&nbsp;Jia Huang ,&nbsp;Bowen Yao ,&nbsp;Aling Zhou ,&nbsp;Zhiyang Huang ,&nbsp;Tayirjan Taylor Isimjan ,&nbsp;Bao Wang ,&nbsp;Xiulin Yang","doi":"10.1039/d4gc05538a","DOIUrl":null,"url":null,"abstract":"<div><div>Zinc–air batteries (ZABs) are considered a promising energy storage technology due to their high energy density and environmental friendliness. However, the development of efficient and durable oxygen reduction reaction (ORR) catalysts remains a challenge. Herein, we report the synthesis of a highly efficient CoP/Cu<sub>3</sub>P@NC catalyst using a Zn-MOF template, which was transformed into N- and C-doped bimetallic phosphides <em>via</em> high-temperature phosphating. The CoP/Cu<sub>3</sub>P@NC-based ZAB exhibits remarkable performance with an open-circuit voltage of 1.50 V, a peak power density of 215 mW cm<sup>−2</sup>, and a specific capacity of 691 mA h g<sub>zn</sub><sup>−1</sup>, outperforming conventional Pt/C-based ZABs. The catalyst maintained 93.5% of its initial activity after 300 h of cycling, demonstrating its excellent long-term stability. Furthermore, CoP/Cu<sub>3</sub>P@NC was applied in flexible ZABs, achieving a power density of 74 mW cm<sup>−2</sup> and showing stable performance under various bending conditions. The superior performance is attributed to the synergistic effects of Co and Cu, optimized structural properties, and high porosity, enhancing mass transfer and oxygen activation. These results suggest that CoP/Cu<sub>3</sub>P@NC is a highly promising ORR catalyst for next-generation ZABs, offering both high efficiency and durability in flexible and conventional energy storage applications.</div></div>","PeriodicalId":78,"journal":{"name":"Green Chemistry","volume":"27 8","pages":"Pages 2276-2285"},"PeriodicalIF":9.3000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1463926225000627","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Zinc–air batteries (ZABs) are considered a promising energy storage technology due to their high energy density and environmental friendliness. However, the development of efficient and durable oxygen reduction reaction (ORR) catalysts remains a challenge. Herein, we report the synthesis of a highly efficient CoP/Cu3P@NC catalyst using a Zn-MOF template, which was transformed into N- and C-doped bimetallic phosphides via high-temperature phosphating. The CoP/Cu3P@NC-based ZAB exhibits remarkable performance with an open-circuit voltage of 1.50 V, a peak power density of 215 mW cm−2, and a specific capacity of 691 mA h gzn−1, outperforming conventional Pt/C-based ZABs. The catalyst maintained 93.5% of its initial activity after 300 h of cycling, demonstrating its excellent long-term stability. Furthermore, CoP/Cu3P@NC was applied in flexible ZABs, achieving a power density of 74 mW cm−2 and showing stable performance under various bending conditions. The superior performance is attributed to the synergistic effects of Co and Cu, optimized structural properties, and high porosity, enhancing mass transfer and oxygen activation. These results suggest that CoP/Cu3P@NC is a highly promising ORR catalyst for next-generation ZABs, offering both high efficiency and durability in flexible and conventional energy storage applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Green Chemistry
Green Chemistry 化学-化学综合
CiteScore
16.10
自引率
7.10%
发文量
677
审稿时长
1.4 months
期刊介绍: Green Chemistry is a journal that provides a unique forum for the publication of innovative research on the development of alternative green and sustainable technologies. The scope of Green Chemistry is based on the definition proposed by Anastas and Warner (Green Chemistry: Theory and Practice, P T Anastas and J C Warner, Oxford University Press, Oxford, 1998), which defines green chemistry as the utilisation of a set of principles that reduces or eliminates the use or generation of hazardous substances in the design, manufacture and application of chemical products. Green Chemistry aims to reduce the environmental impact of the chemical enterprise by developing a technology base that is inherently non-toxic to living things and the environment. The journal welcomes submissions on all aspects of research relating to this endeavor and publishes original and significant cutting-edge research that is likely to be of wide general appeal. For a work to be published, it must present a significant advance in green chemistry, including a comparison with existing methods and a demonstration of advantages over those methods.
期刊最新文献
Back cover Back cover Upcycling hazardous waste into high-performance Ni/η-Al2O3 catalysts for CO2 methanation. Back cover Back cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1