{"title":"Design and fabrication of mesh-like four-warp leno cotton fabric based on self-locking effect: outstanding mechanical performance and breathability","authors":"Xiao Tian, Meiyu Yao, Ying Li, Li Li","doi":"10.1007/s10570-024-06365-y","DOIUrl":null,"url":null,"abstract":"<div><p>Achieving a fabric with good mechanical performance and breathability is significant for the development of protective clothing. The leno structure is a desirable fabric design for enhancing these properties due to its advantageous characteristics, such as flexibility, lightness, diamond-shaped structure, and increased yarn interlacing. However, there is a lack of studies focused on developing novel leno structures because of the difficulty of weaving and exploring the mechanical behavior and breathability of various leno fabrics with different structural characteristics. In this study, we leveraged advanced weaving techniques with improved needle-shaped heald frames to develop a programmed mesh-like four-warp leno cotton fabric that offers outstanding mechanical performance and breathability. The efficacy of the self-locking effects, achieved by manipulating the yarn interweaving to simultaneously regulate yarn friction and fabric porosity, is experimentally demonstrated. Compared to plain structures of the same density, the four-warp leno (FL) fabric exhibits nearly twice the tensile strength and strain in the warp direction. Additionally, the four-warp leno fabric demonstrates greater displacements to reach the junction rupture force point than plain structure of the same density in the yarn pull out tests, owing to the self-locked interweaving of the warp yarns. The yarn pull-out behavior of the FL was analyzed to illustrate the variation in load and displacement. Moreover, the high porosity of the four-warp leno woven fabric results in excellent air permeability, thermal conductivity, and water vapor transmission. This study provides an effective strategy for designing and fabricating four-warp leno fabric with outstanding mechanical performance and breathability for diverse applications.</p></div>","PeriodicalId":511,"journal":{"name":"Cellulose","volume":"32 3","pages":"1979 - 1991"},"PeriodicalIF":4.9000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10570-024-06365-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellulose","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10570-024-06365-y","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
引用次数: 0
Abstract
Achieving a fabric with good mechanical performance and breathability is significant for the development of protective clothing. The leno structure is a desirable fabric design for enhancing these properties due to its advantageous characteristics, such as flexibility, lightness, diamond-shaped structure, and increased yarn interlacing. However, there is a lack of studies focused on developing novel leno structures because of the difficulty of weaving and exploring the mechanical behavior and breathability of various leno fabrics with different structural characteristics. In this study, we leveraged advanced weaving techniques with improved needle-shaped heald frames to develop a programmed mesh-like four-warp leno cotton fabric that offers outstanding mechanical performance and breathability. The efficacy of the self-locking effects, achieved by manipulating the yarn interweaving to simultaneously regulate yarn friction and fabric porosity, is experimentally demonstrated. Compared to plain structures of the same density, the four-warp leno (FL) fabric exhibits nearly twice the tensile strength and strain in the warp direction. Additionally, the four-warp leno fabric demonstrates greater displacements to reach the junction rupture force point than plain structure of the same density in the yarn pull out tests, owing to the self-locked interweaving of the warp yarns. The yarn pull-out behavior of the FL was analyzed to illustrate the variation in load and displacement. Moreover, the high porosity of the four-warp leno woven fabric results in excellent air permeability, thermal conductivity, and water vapor transmission. This study provides an effective strategy for designing and fabricating four-warp leno fabric with outstanding mechanical performance and breathability for diverse applications.
期刊介绍:
Cellulose is an international journal devoted to the dissemination of research and scientific and technological progress in the field of cellulose and related naturally occurring polymers. The journal is concerned with the pure and applied science of cellulose and related materials, and also with the development of relevant new technologies. This includes the chemistry, biochemistry, physics and materials science of cellulose and its sources, including wood and other biomass resources, and their derivatives. Coverage extends to the conversion of these polymers and resources into manufactured goods, such as pulp, paper, textiles, and manufactured as well natural fibers, and to the chemistry of materials used in their processing. Cellulose publishes review articles, research papers, and technical notes.