{"title":"The essential role of humified organic matter in preserving soil health","authors":"Alessandro Piccolo, Marios Drosos","doi":"10.1186/s40538-025-00730-0","DOIUrl":null,"url":null,"abstract":"<div><p>The soil health notion has been recently expanded to relate soil functions not only to soil fertility for a sustainable primary productivity, but also to the control of water cycling and of the soil carbon storage. Soil humus is fundamental to achieve the objectives of soil health, and it is therefore deemed necessary to enlarge the knowledge of its composition and dynamics, if a modern soil management was to be pursued. This review first describes the contemporary understanding of the supramolecular structure of soil humus and the derived modern method to identify the totality of humic components to an unprecedented extent in soils under different soil management and cropping systems. Then, it accounts on how humus, either native in soil or exogenous from sources rich in organic carbon such as lignite, compost, and lignocellulosic residues, improves the soil physical fertility, limits the risk of erosion, enhances the bioactivity of the rhizosphere microbiome, and directly stimulates plant growth. Moreover, it is highlighted the role played by humus in ecologically sound soil managements, such as in organic and biodynamic agricultural productions, which are progressively growing as alternative to conventional but environmentally unsafe practices.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":512,"journal":{"name":"Chemical and Biological Technologies in Agriculture","volume":"12 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chembioagro.springeropen.com/counter/pdf/10.1186/s40538-025-00730-0","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical and Biological Technologies in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1186/s40538-025-00730-0","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The soil health notion has been recently expanded to relate soil functions not only to soil fertility for a sustainable primary productivity, but also to the control of water cycling and of the soil carbon storage. Soil humus is fundamental to achieve the objectives of soil health, and it is therefore deemed necessary to enlarge the knowledge of its composition and dynamics, if a modern soil management was to be pursued. This review first describes the contemporary understanding of the supramolecular structure of soil humus and the derived modern method to identify the totality of humic components to an unprecedented extent in soils under different soil management and cropping systems. Then, it accounts on how humus, either native in soil or exogenous from sources rich in organic carbon such as lignite, compost, and lignocellulosic residues, improves the soil physical fertility, limits the risk of erosion, enhances the bioactivity of the rhizosphere microbiome, and directly stimulates plant growth. Moreover, it is highlighted the role played by humus in ecologically sound soil managements, such as in organic and biodynamic agricultural productions, which are progressively growing as alternative to conventional but environmentally unsafe practices.
期刊介绍:
Chemical and Biological Technologies in Agriculture is an international, interdisciplinary, peer-reviewed forum for the advancement and application to all fields of agriculture of modern chemical, biochemical and molecular technologies. The scope of this journal includes chemical and biochemical processes aimed to increase sustainable agricultural and food production, the evaluation of quality and origin of raw primary products and their transformation into foods and chemicals, as well as environmental monitoring and remediation. Of special interest are the effects of chemical and biochemical technologies, also at the nano and supramolecular scale, on the relationships between soil, plants, microorganisms and their environment, with the help of modern bioinformatics. Another special focus is the use of modern bioorganic and biological chemistry to develop new technologies for plant nutrition and bio-stimulation, advancement of biorefineries from biomasses, safe and traceable food products, carbon storage in soil and plants and restoration of contaminated soils to agriculture.
This journal presents the first opportunity to bring together researchers from a wide number of disciplines within the agricultural chemical and biological sciences, from both industry and academia. The principle aim of Chemical and Biological Technologies in Agriculture is to allow the exchange of the most advanced chemical and biochemical knowledge to develop technologies which address one of the most pressing challenges of our times - sustaining a growing world population.
Chemical and Biological Technologies in Agriculture publishes original research articles, short letters and invited reviews. Articles from scientists in industry, academia as well as private research institutes, non-governmental and environmental organizations are encouraged.