Enantioseparation system based on a novel nanomaterial synthesized from chiral molecularly imprinted polymers and achiral metal–organic frameworks by capillary electrochromatography
Yifan Yan, Pandeng Miao, Shuaijing Du, Yingxiang Du
{"title":"Enantioseparation system based on a novel nanomaterial synthesized from chiral molecularly imprinted polymers and achiral metal–organic frameworks by capillary electrochromatography","authors":"Yifan Yan, Pandeng Miao, Shuaijing Du, Yingxiang Du","doi":"10.1007/s00604-024-06911-2","DOIUrl":null,"url":null,"abstract":"<div><p>A novel nanomaterial synthesized by chiral molecularly imprinted polymers (CMIPs) and achiral metal–organic frameworks (MOFs) was designed as stationary phase to prepare L-TRP@MIP(APTES-TEOS)@UiO-66-NH<sub>2</sub>@capillary for tryptophan enantioseparation in open tubular capillary electrochromatography. Compared with the capillary column coated only with CMIPs or achiral MOFs, this column remarkably improved the enantioseparation ability of tryptophan (resolution, 0.92/0 → 3.68). The chromatographic conditions (buffer pH, applied voltage, organic additive content) were optimized. Additionally, through static adsorption experiments, a conclusion was reached that the materials of stationary phase had stronger adsorption capacity for L-TRP than that for D-TRP, which revealed chiral separation mechanism of CEC system. This study opens up creative ideas for coating the novel nanomaterial in CEC system, which has good application prospects in the field of chiral separation.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":705,"journal":{"name":"Microchimica Acta","volume":"192 3","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microchimica Acta","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00604-024-06911-2","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A novel nanomaterial synthesized by chiral molecularly imprinted polymers (CMIPs) and achiral metal–organic frameworks (MOFs) was designed as stationary phase to prepare L-TRP@MIP(APTES-TEOS)@UiO-66-NH2@capillary for tryptophan enantioseparation in open tubular capillary electrochromatography. Compared with the capillary column coated only with CMIPs or achiral MOFs, this column remarkably improved the enantioseparation ability of tryptophan (resolution, 0.92/0 → 3.68). The chromatographic conditions (buffer pH, applied voltage, organic additive content) were optimized. Additionally, through static adsorption experiments, a conclusion was reached that the materials of stationary phase had stronger adsorption capacity for L-TRP than that for D-TRP, which revealed chiral separation mechanism of CEC system. This study opens up creative ideas for coating the novel nanomaterial in CEC system, which has good application prospects in the field of chiral separation.
期刊介绍:
As a peer-reviewed journal for analytical sciences and technologies on the micro- and nanoscale, Microchimica Acta has established itself as a premier forum for truly novel approaches in chemical and biochemical analysis. Coverage includes methods and devices that provide expedient solutions to the most contemporary demands in this area. Examples are point-of-care technologies, wearable (bio)sensors, in-vivo-monitoring, micro/nanomotors and materials based on synthetic biology as well as biomedical imaging and targeting.