{"title":"Water repellency of cotton knitted fabrics treated with alkyl ketene dimers","authors":"Satoru Onodera, Chiaki Tanaka, Akira Isogai","doi":"10.1007/s10570-025-06390-5","DOIUrl":null,"url":null,"abstract":"<div><p>Water repellency is one of the expected functions for originally hydrophilic cotton fabrics (CFs) in various applications. Aqueous dispersions of alkylketene dimers have been used as efficient sizing chemicals in practical papermaking. In the present study, we soaked CFs in weakly cationic AKD dispersions of various AKD concentrations, squeezed them, and cured/dried the AKD dispersion-containing wet CFs at 120 °C for 10 min. Scanning electron microscopy revealed flake-like AKD structures in the AKD-treated and air-dried CFs, which mostly disappeared when the AKD-related compounds (such as the original AKD, hydrolyzed AKD, and cellulose-reacted AKD molecules present in the CFs) melted and spread during curing. The contents of the AKD-related compounds in the CFs were determined by Fourier-transform infrared spectroscopy. When a dispersion with an AKD concentration of 6.7 g/L and a pH of 4.5 was used, the cured and dried CF contained ~ 0.49% AKD-related compounds. The resulting CF sample had prolonged water-absorption times (a measure of water repellency) of > 1800s, even after 30 cycles of laundry treatment. The content of AKD-related compounds was decreased markedly from 0.49 to 0.06% and 0.01% by laundry treatment once and 30 times, respectively. Quite small amounts of AKD-related compounds remained in the CF after laundry treatment, and contributed to its high water repellency. Therefore, the AKD treatment developed in the present study offers a practical and efficient means of conferring high water repellency on CFs.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":511,"journal":{"name":"Cellulose","volume":"32 3","pages":"2073 - 2086"},"PeriodicalIF":4.9000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10570-025-06390-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellulose","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10570-025-06390-5","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
引用次数: 0
Abstract
Water repellency is one of the expected functions for originally hydrophilic cotton fabrics (CFs) in various applications. Aqueous dispersions of alkylketene dimers have been used as efficient sizing chemicals in practical papermaking. In the present study, we soaked CFs in weakly cationic AKD dispersions of various AKD concentrations, squeezed them, and cured/dried the AKD dispersion-containing wet CFs at 120 °C for 10 min. Scanning electron microscopy revealed flake-like AKD structures in the AKD-treated and air-dried CFs, which mostly disappeared when the AKD-related compounds (such as the original AKD, hydrolyzed AKD, and cellulose-reacted AKD molecules present in the CFs) melted and spread during curing. The contents of the AKD-related compounds in the CFs were determined by Fourier-transform infrared spectroscopy. When a dispersion with an AKD concentration of 6.7 g/L and a pH of 4.5 was used, the cured and dried CF contained ~ 0.49% AKD-related compounds. The resulting CF sample had prolonged water-absorption times (a measure of water repellency) of > 1800s, even after 30 cycles of laundry treatment. The content of AKD-related compounds was decreased markedly from 0.49 to 0.06% and 0.01% by laundry treatment once and 30 times, respectively. Quite small amounts of AKD-related compounds remained in the CF after laundry treatment, and contributed to its high water repellency. Therefore, the AKD treatment developed in the present study offers a practical and efficient means of conferring high water repellency on CFs.
期刊介绍:
Cellulose is an international journal devoted to the dissemination of research and scientific and technological progress in the field of cellulose and related naturally occurring polymers. The journal is concerned with the pure and applied science of cellulose and related materials, and also with the development of relevant new technologies. This includes the chemistry, biochemistry, physics and materials science of cellulose and its sources, including wood and other biomass resources, and their derivatives. Coverage extends to the conversion of these polymers and resources into manufactured goods, such as pulp, paper, textiles, and manufactured as well natural fibers, and to the chemistry of materials used in their processing. Cellulose publishes review articles, research papers, and technical notes.